Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (1): 26-44.DOI: 10.3969-j.issn.1001-909X.2023.01.003
Previous Articles Next Articles
LIU Liping1,2(), CHU Fengyou1,2,*(), GUO Lei3, LI Xiaohu1,2
Received:
2022-09-22
Revised:
2022-11-15
Online:
2023-03-15
Published:
2023-04-28
CLC Number:
LIU Liping, CHU Fengyou, GUO Lei, LI Xiaohu. Explorations of marine gas hydrate deposits and the signatures of hydrocarbon venting using in situ techniques[J]. Journal of Marine Sciences, 2023, 41(1): 26-44.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969-j.issn.1001-909X.2023.01.003
Fig.3 (a)Acoustic exploration of the plume using the vessel-based multibeam sonar system[37]; (b)Multibeam acoustic image of a gas bubble plume in a water column[38]; (c)Vessel-based side-scan sonar system; (d)Cold seep venting captured by the side-scan sonar system in Okhotsk[40]
Fig.4 Combined seismic profile of the water column and sediment layers[45] (The deep sourced fluids migrate through the chimney and discharge on the seafloor, generating pockmarks at the seabed and plumes in the water column. The white dashed lines were demarcated based on the boundaries of the plumes.)
Fig.5 (a)Case diagram showing the deployment process of a bottom lander equipped with various sensors, such as CH4 sensor[56]; (b)Inverted funnel mounted on an ROV measuring the flux of a single plume[57]; (c)Turbine seep-tent schematic[58]; (d)Schematic sketch of the horizonal multibeam system monitoring on a plume[59-60]
Fig.6 (a)Sketch showing the shallow hydrate system at Bush Hill, in the northern Gulf of Mexico[69]; (b)Yellow hydrate outcrops stained by oil at the Barkley Canyon[70]
Fig.7 Selected visual systems for investigating on hydrate or cold seep areas (a.Haima ROV; b.Haizhe ROV; c.Tansuo 4500 AUV; d.Deep-tow geo-acoustic system; e.Crawl vehicle “Wally” deployed at the Barkley Canyon Node of the NEPTUNE-Canada; f.Shen Hai Yong Shi HOV)
子网络 | 最大水深/m | 深/浅水 | 所属海域 | 建设国 | 原有基础 | 研究目标 |
---|---|---|---|---|---|---|
黑海子网 | 2 000 | 深水 | 黑海 | 黑海周边国家 | CRIMEA等 | 甲烷渗漏、水合物分解、海底泥火山活动及地质灾害 |
挪威大陆边缘子网 | 1 200 | 深水 | 北大西洋 | 挪威 | HMMV泥火山活动及水合物分解对海底稳定性的影响 | |
北冰洋子网 | >5 000 | 深水 | 北冰洋 | 德国 | HAUSGARTEN站 | 海底水合物分解及甲烷渗漏对气候的影响 |
东地中海子网 | 3 800 | 深水 | 地中海 | 希腊 | NESTOR | 甲烷渗漏与构造运动的关系、流体通道的水声学研究、地震、海啸等 |
马尔马拉海子网 | >1 000 | 深水 | 地中海与 黑海交界 | 土耳其 | MARMARA-DM | 观测北安那托利亚断层活动、甲烷渗漏、地震及海底滑坡 |
伊比利亚半岛子网 | 4 000 | 深水 | 大西洋 | 葡萄牙,西班牙 | NEAREST, LIDO | 地震、海啸;加的斯湾甲烷渗漏相关的泥火山、麻坑、丘体及碳酸盐岩烟囱体等 |
Tab.1 Sub-networks of ESONET-EMSO that are associated with marine gas hydrate or methane leakage
子网络 | 最大水深/m | 深/浅水 | 所属海域 | 建设国 | 原有基础 | 研究目标 |
---|---|---|---|---|---|---|
黑海子网 | 2 000 | 深水 | 黑海 | 黑海周边国家 | CRIMEA等 | 甲烷渗漏、水合物分解、海底泥火山活动及地质灾害 |
挪威大陆边缘子网 | 1 200 | 深水 | 北大西洋 | 挪威 | HMMV泥火山活动及水合物分解对海底稳定性的影响 | |
北冰洋子网 | >5 000 | 深水 | 北冰洋 | 德国 | HAUSGARTEN站 | 海底水合物分解及甲烷渗漏对气候的影响 |
东地中海子网 | 3 800 | 深水 | 地中海 | 希腊 | NESTOR | 甲烷渗漏与构造运动的关系、流体通道的水声学研究、地震、海啸等 |
马尔马拉海子网 | >1 000 | 深水 | 地中海与 黑海交界 | 土耳其 | MARMARA-DM | 观测北安那托利亚断层活动、甲烷渗漏、地震及海底滑坡 |
伊比利亚半岛子网 | 4 000 | 深水 | 大西洋 | 葡萄牙,西班牙 | NEAREST, LIDO | 地震、海啸;加的斯湾甲烷渗漏相关的泥火山、麻坑、丘体及碳酸盐岩烟囱体等 |
Fig.9 (a)Sketch showing the submarine seafloor observatory network in the Black Sea[89]; (b)Seafloor observatory network and nodes at Norwegian Continental margin[77] (In Figure 9a, bold dashed lines in black represent shelf edge; bold squared lines represent boundaries of tectonic units; dots in red represent methane seeps; ice blue squares represent gas hydrate; black triangles represent mud volcanoes; red lines represent cables; blue dots represent nodes; the yellow rectangle represents the Dnipro palaeo-delta area with intensive methane seepages.)
Fig.11 Diagram of the seafloor observatory network at the Woolsey Mound in Mississippi Canyon 118 (MC118) located in the Gulf of Mexico (Figure was modified from reference[95].)
[1] |
THATCHER K E, WESTBROOK G K, SARKAR S, et al. Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: Timing, rates, and geological controls[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(1): 22-38.
DOI URL |
[2] |
LIU L P, RYU B, SUN Z L, et al. Monitoring and research on environmental impacts related to marine natural gas hydrates: Review and future perspective[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 82-107.
DOI URL |
[3] |
TALUKDER A R. Review of submarine cold seep plumbing systems: Leakage to seepage and venting[J]. Terra Nova, 2012, 24(4): 255-272.
DOI URL |
[4] | 吴能友. 天然气水合物运聚体系:理论、方法与实践[M]. 合肥: 安徽科学技术出版社, 2020. |
WU N Y. Gas hydrate migration and accumulation system: Theory, method and practice[M]. Hefei: Anhui Science & Technology Publishing House, 2020. | |
[5] |
BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215.
DOI URL |
[6] |
BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30.
DOI URL |
[7] |
VAN DOVER C L, AHARON P, BERNHARD J M, et al. Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(2): 281-300.
DOI URL |
[8] |
HOVLAND M, SVENSEN H. Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine Geology, 2006, 228(1-4): 15-23.
DOI URL |
[9] |
ANDREASSEN K, HUBBARD A, WINSBORROW M, et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor[J]. Science, 2017, 356(6341): 948-953.
DOI PMID |
[10] | 刘玉山, 祝有海, 吴必豪. 更具开发前景的浅成天然气水合物[J]. 海洋地质前沿, 2016, 32(4):24-30. |
LIU Y S, ZHU Y H, WU B H. Shallow gas hydrates, a type of hydrate deposits more suitable for production[J]. Marine Geology Frontiers, 2016, 32(4): 24-30. | |
[11] |
LIU L P, CHU F Y, WU N Y, et al. Gas sources, migration, and accumulation systems: The shallow subsurface and near-seafloor gas hydrate deposits[J]. Energies, 2022, 15(19): 6921.
DOI URL |
[12] |
FREIRE A F M, MATSUMOTO R, SANTOS L A. Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea[J]. Marine and Petroleum Geology, 2011, 28(10): 1967-1978.
DOI URL |
[13] |
SOLOMON E A, KASTNER M, JANNASCH H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope[J]. Earth and Planetary Science Letters, 2008, 270(1/2): 95-105.
DOI URL |
[14] |
WAAGE M, PORTNOV A, SEROV P, et al. Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(2): 630-650.
DOI URL |
[15] |
PHILIP B T, DENNY A R, SOLOMON E A, et al. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 1182-1196.
DOI URL |
[16] |
DE BEER D, SAUTER E, NIEMANN H, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano[J]. Limnology and Oceanography, 2006, 51(3): 1315-1331.
DOI URL |
[17] | BOHRMANN G, TORRES M E. Gas hydrates in marine sediments[M]//Marine Geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 481-512. |
[18] |
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513.
PMID |
[19] |
MATSUMOTO R, RYU B J, LEE S R, et al. Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia and Oceania region[J]. Marine and Petroleum Geology, 2011, 28(10): 1751-1767.
DOI URL |
[20] |
SU M, SHA Z B, ZHANG C M, et al. Types, characte-ristics and significances of migrating pathways of gas-bearing fluids in the Shenhu area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(1): 219-231.
DOI URL |
[21] |
SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103: 1889-1916.
DOI URL |
[22] |
FISCHER D, MOGOLLÓN J M, STRASSER M, et al. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage[J]. Nature Geoscience, 2013, 6(8): 647-651.
DOI |
[23] | THOMSEN L, BARNES C, BEST M, et al. Ocean circulation promotes methane release from gas hydrate outcrops at the NEPTUNE Canada Barkley Canyon node[J]. Geophysical Research Letters, 2012, 39(16): L16605. |
[24] | HORNBACH M J, RUPPEL C, VAN DOVER C L. Three-dimensional structure of fluid conduits sustaining an active deep marine cold seep[J]. Geophysical Research Letters, 2007, 34(5): 508-512. |
[25] |
NAUDTS L, GREINERT J, POORT J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive-versus bubble-released methane[J]. Marine Geology, 2010, 272(1-4): 233-250.
DOI URL |
[26] |
MAZZINI A, ETIOPE G. Mud volcanism: An updated review[J]. Earth-Science Reviews, 2017, 168: 81-112.
DOI URL |
[27] |
WEI J G, PAPE T, SULTAN N, et al. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin-Results and interpretation from shallow drilling[J]. Marine and Petroleum Geology, 2015, 59: 359-370.
DOI URL |
[28] |
VAN WEERING T C E, DULLO C, HENRIET J P. An introduction to geosphere-biosphere coupling; cold seep related carbonate and mound formation and ecology[J]. Marine Geology, 2003, 198(1/2): 1-3.
DOI URL |
[29] |
SIBUET M, OLU K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(1-3): 517-567.
DOI URL |
[30] | USSLER W III, PAULL C K. Ion exclusion associated with marine gas hydrate deposits[M] //PAULLC K, DILLONW P. Natural gas hydrates: Occurrence, distribution and detection. Washington, D. C.: American Geophysical Union, 2013: 41-51. |
[31] | 张光学, 梁金强, 张明, 等. 海洋天然气水合物地震联合探测[M]. 北京: 地质出版社, 2014. |
ZHANG G X, LIANG J Q, ZHANG M, et al. Combined seismic survey on marine gas hydrates[M]. Beijing: Geological Publishing House, 2014. | |
[32] | 陈林, 宋海斌. 海底天然气渗漏的地球物理特征及识别方法[J]. 地球物理学进展, 2005, 20(4):1067-1073. |
CHEN L, SONG H B. Geophysical features and identification of natural gas seepage in marine environment[J]. Progress in Geophysics, 2005, 20(4): 1067-1073. | |
[33] | 刘伯然, 宋海斌, 关永贤, 等. 南海东北部陆坡冷泉系统的浅地层剖面特征与分析[J]. 地球物理学报, 2015, 58(1):247-256. |
LIU B R, SONG H B, GUAN Y X, et al. Characteristics and formation mechanism of cold seep system in the northeastern continental slope of South China Sea from sub-bottom profiler data[J]. Chinese Journal of Geophysics, 2015, 58(1): 247-256. | |
[34] | 骆迪, 蔡峰, 闫桂京, 等. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿, 2020, 36(9):101-108. |
LUO D, CAI F, YAN G J, et al. High resolution seismic method for shallow gas hydrates exploration[J]. Marine Geology Frontiers, 2020, 36(9): 101-108. | |
[35] |
FOUCHER J P, NOUZÉ H, HENRY P. Observation and tentative interpretation of a double BSR on the Nankai slope[J]. Marine Geology, 2002, 187(1/2): 161-175.
DOI URL |
[36] | 顾兆峰, 刘怀山, 张志珣. 浅层气逸出到海水中的气泡声学探测方法[J]. 海洋地质与第四纪地质, 2008, 28(2):129-135. |
GU Z F, LIU H S, ZHANG Z X. Acoustic detecting method for bubbles from shallow gas to sea water[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 129-135. | |
[37] | 梅赛, 赵铁虎, 杨源, 等. 甲烷羽状流水体声学探测及气体运移通量测算[J]. 海洋地质前沿, 2013, 29(3):53-59. |
MEI S, ZHAO T H, YANG Y, et al. The water column acoustical detection of methane plume and gas migration flux calculation[J]. Marine Geology Frontiers, 2013, 29(3): 53-59. | |
[38] |
LIU B, CHEN J X, YANG L, et al. Multi-beam and seismic investigations of the active Haima cold seeps, northwestern South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(7): 183-197.
DOI |
[39] | 梅赛, 杨慧良, 孙治雷, 等. 冷泉羽状流多波束水体声学探测技术与应用[J]. 海洋地质与第四纪地质, 2021, 41(4):222-231. |
MEI S, YANG H L, SUN Z L, et al. Acoustic detecting technology based on multibeam water column imaging and its application to cold seep plume[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 222-231. | |
[40] | 栾锡武, 刘鸿, 岳保静, 等. 海底冷泉在旁扫声纳图像上的识别[J]. 现代地质, 2010, 24(3):474-480. |
LUAN X W, LIU H, YUE B J, et al. Characteristics of cold seepage on side scan sonar sonogram[J]. Geoscience, 2010, 24(3):474-480. | |
[41] | 魏合龙, 孙治雷, 王利波, 等. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质,2016, 36(1):1-13. |
WEI H L, SUN Z L, WANG L B, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 1-13. | |
[42] |
JOHNSON J E, GOLDFINGER C, SUESS E. Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin[J]. Marine Geology, 2003, 202(1/2): 79-120.
DOI URL |
[43] |
KLAUCKE I, WEINREBE W, PETERSEN C J, et al. Temporal variability of gas seeps offshore New Zealand: Multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin[J]. Marine Geology, 2010, 272(1-4): 49-58.
DOI URL |
[44] | 韩同刚, 童思友, 陈江欣, 等. 海底羽状流探测方法分析[J]. 地球物理学进展, 2018, 33(5):2113-2125. |
HAN T G, TONG S Y, CHEN J X, et al. Analysis of detection methods for submarine plume[J]. Progress in Geophysics, 2018, 33(5): 2113-2125. | |
[45] | 陈江欣, 宋海斌, 关永贤, 等. 海底冷泉的地震海洋学初探[J]. 地球物理学报, 2017, 60(2):604-616. |
CHEN J X, SONG H B, GUAN Y X, et al. A preliminary study of submarine cold seeps applying seismic oceano-graphy techniques[J]. Chinese Journal of Geophysics, 2017, 60(2): 604-616. | |
[46] | 赵广涛, 徐翠玲, 张晓东, 等. 海底沉积物-水界面溶解甲烷渗漏通量原位观测研究进展[J]. 中国海洋大学学报, 2014, 44(12):73-81. |
ZHAO G T, XU C L, ZHANG X D, et al. Research progress in in-situ observations of dissolved methane seepage fluxed across the water-sediment interface[J]. Periodical of Ocean University of China, 2014, 44(12): 73-81. | |
[47] | 于新生, 李丽娜, 胡亚丽, 等. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10):1030-1037. |
YU X S, LI L N, HU Y L, et al. The development of in-situ sensors for dissolved methane measurement in the sea[J]. Advances in Earth Science, 2011, 26(10): 1030-1037. | |
[48] | AWASHIMA Y, SAITO H, HOAKI T, et al. Development of monitoring system on methane hydrate production[C]//Oceans 2008-MTS/IEEE Kobe Techno-Ocean. April 8-11, 2008, Kobe, Japan. IEEE, 2008: 1-7. |
[49] | 张鑫, 席世川. 激光拉曼光谱技术对深海极端环境流体-岩石相互作用的启示[J]. 矿物岩石地球化学通报, 2022, 41(1):45-56,6. |
ZHANG X, XI S C. Inspiration of laser Raman spectroscopy to the fluid-rock interaction in deep-sea extreme environment[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 45-56, 6. | |
[50] | 胡刚, 赵铁虎, 章雪挺, 等. 天然气水合物赋存区近海底环境原位观测系统集成与实现[J]. 海洋地质前沿, 2015, 31(6):30-35. |
HU G, ZHAO T H, ZHANG X T, et al. Integration and implementation of seabed environment in situ monitoring systems in natural gas hydrate area[J]. Marine Geology Frontiers, 2015, 31(6): 30-35. | |
[51] | 赵广涛, 于新生, 李欣, 等. Benvir:一个深海海底边界层原位监测装置[J]. 高技术通讯, 2015, 25(1):54-60. |
ZHAO G T, YU X S, LI X, et al. Benvir: A in situ deep-sea observation system for benthic enviromental monitoring[J]. Chinese High Technology Letters, 2015, 25(1): 54-60. | |
[52] | 董一飞, 罗文造, 梁前勇, 等. 坐底式潜标观测系统及其在天然气水合物区的试验性应用[J]. 海洋地质与第四纪地质, 2017, 37(5):195-203. |
DONG Y F, LUO W Z, LIANG Q Y, et al. A newly developed bottom-supported submersible buoyant system and its testing application to a natural gas hydrate area[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 195-203. | |
[53] | 李彬, 崔胜国, 唐实, 等. 深海生态过程长期定点观测系统研发及冷泉区科考应用[J]. 高技术通讯, 2019, 29(7):675-684. |
LI B, CUI S G, TANG S, et al. Development and application of the long-term fixed point observation system of deep-sea ecological process[J]. Chinese High Technology Letters, 2019, 29(7): 675-684. | |
[54] |
MARTENS C S, MENDLOVITZ H P, SEIM H, et al. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 129: 41-52.
DOI URL |
[55] | ARATA N, NAGAKUBO S, YAMAMOTO K, et al. Environmental impact assessment studies on Japan’s methane hydrate R&D Program[C]//Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 2011: 1-8. |
[56] | 薛钢, 刘延俊, 薛祎凡, 等. 集成水力翼板的深海着陆器水动力特性研究与结构优化[J]. 机械工程学报, 2022, 58:1-15. |
XUE G, LIU Y J, XUE Y F, et al. Hydrodynamic characteristics research and structure optimization of hadal lander with hydrofoil[J]. Journal of Mechanical Engineering, 2022, 58: 1-15. | |
[57] |
SCHNEIDER VON DEIMLING J, REHDER G, GREINERT J, et al. Quantification of seep-related methane gas emissions at Tommeliten, North Sea[J]. Continental Shelf Research, 2011, 31(7/8): 867-878.
DOI URL |
[58] | 邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602. |
DI P F, FENG D, GAO L B, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites[J]. Progress in Geophysics, 2008, 23(5): 1592-1602. | |
[59] | GREINERT J. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant[J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07048. |
[60] |
SCHNEIDER VON DEIMLING J, GREINERT J, CHAPMAN N R, et al. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents[J]. Limnology and Oceanography: Methods, 2010, 8(5): 155-171.
DOI URL |
[61] |
TRYON M D, BROWN K M, TORRES M E, et al. Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia[J]. Geology, 1999, 27(12): 1075.
DOI URL |
[62] |
邸鹏飞, 陈庆华, 陈多福. 海底冷泉渗漏气体流量原位在线测量技术研究[J]. 热带海洋学报, 2012, 31(5):83-87.
DOI |
DI P F, CHEN Q H, CHEN D F. In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study[J]. Journal of Tropical Oceanography, 2012, 31(5): 83-87. | |
[63] |
CRUTCHLEY G J, BERNDT C, GEIGER S, et al. Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA[J]. Geology, 2013, 41(5): 551-554.
DOI URL |
[64] | SUESS E, TORRES M E, BOHRMANN G, et al. Sea floor methane hydrates at hydrate ridge, Cascadia margin[M] //PAULLC K, DILLONW P. Natural gas hydrates: Occurrence, distribution, and detection. Washington, D. C.: American Geophysical Union, 2001: 87-98. |
[65] |
TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1/2): 225-241.
DOI URL |
[66] |
JATIAULT R, DHONT D, LONCKE L, et al. Monitoring of natural oil seepage in the Lower Congo Basin using SAR observations[J]. Remote Sensing of Environment, 2017, 191: 258-272.
DOI URL |
[67] |
SOLOMON E A, KASTNER M, MACDONALD I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico[J]. Nature Geoscience, 2009, 2(8): 561-565.
DOI |
[68] |
JONES A T, LOGAN G A, KENNARD J M, et al. Reassessing potential origins of Synthetic Aperture Radar (SAR) slicks from the Timor Sea region of the north west shelf on the basis of field and ancillary data[J]. The APPEA Journal, 2005, 45(1): 311-332.
DOI URL |
[69] |
SASSEN R, LOSH S L, CATHLESIII L, et al. Massive vein-filling gas hydrate: Relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico[J]. Marine and Petroleum Geology, 2001, 18(5): 551-560.
DOI URL |
[70] | CHAPMAN R, POHLMAN J, COFFIN R, et al. Thermogenic gas hydrates in the northern Cascadia margin[J]. Eos, Transactions American Geophysical Union, 2004, 85(38): 361-365. |
[71] | 曾雅琦, 王正海, 邢学文, 等. 海水背景下不同浓度的甲烷含量高光谱定量反演[J]. 遥感学报, 2020, 24(12):1525-1533. |
ZENG Y Q, WANG Z H, XING X W, et al. Hyperspectral quantitative retrieval of methane content in different concentrations in the seawater background[J]. Journal of Remote Sensing, 2020, 24(12): 1525-1533. | |
[72] | 卢振权, 强祖基, 吴必豪. 利用卫星热红外遥感探测南海天然气水合物[J]. 地质学报, 2002, 76(1):100-106,146. |
LU Z Q, QIANG Z J, WU B H. Exploring gas hydrates by satellite-based thermal infrared remote sensing in the South China Sea[J]. Acta Geologica Sinica, 2002, 76(1): 100-106, 146.
DOI URL |
|
[73] |
LEIFER I, BOLES J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment[J]. Marine and Petroleum Geology, 2005, 22(4): 551-568.
DOI URL |
[74] | 马立杰. 利用卫星遥感探测海域天然气水合物[D]. 青岛: 中国科学院研究生院(海洋研究所), 2005. |
MA L J. Detection of oceanic gas hydrates by satellite remote sensing[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2005. | |
[75] | 张灿影, 郭琳, 鲁景亮, 等. 潜水器在深海生物多样性研究中的应用进展[J]. 海洋科学, 2019, 43(1):112-120. |
ZHANG C Y, GUO L, LU J L, et al. Progress of the submersible in deep-sea biodiversity research[J]. Marine Sciences, 2019, 43(1): 112-120. | |
[76] | 张汉泉, 吴庐山, 张锦炜. 海底可视技术在天然气水合物勘查中的应用[J]. 地质通报, 2005, 24(2):185-188. |
ZHANG H Q, WU L S, ZHANG J W. Application of the sea-floor visualization technique in gas hydrate exploration[J]. Regional Geology of China, 2005, 24(2): 185-188. | |
[77] | 张伙带, 韩冰, 刘丽强. 海底观测新技术[M]. 北京: 海洋出版社, 2019. |
ZHANG H D, HAN B, LIU L Q. New technologies for seafloor observation[M]. Beijing: China Ocean Press, 2019. | |
[78] |
LIANG Q Y, HU Y, FENG D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41.
DOI URL |
[79] | 王冰, 宋永东, 杜增丰, 等. 基于“发现”号ROV的近海底综合声学调查系统及其在台西南冷泉调查中的应用[J]. 海洋与湖沼, 2020, 51(4):889-898. |
WANG B, SONG Y D, DU Z F, et al. An integrated underwater acoustic survey system and its application in the investigation of the cold seep site off southwestern Taiwan[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 889-898. | |
[80] |
冯强强, 温明明, 牟泽霖, 等. 声学深拖系统在海底冷泉调查中的应用[J]. 测绘工程, 2018, 27(8):49-52,59.
DOI PMID |
FENG Q Q, WEN M M, MU Z L, et al. Application of acoustic deep tow to the cold seep investigation[J]. Engineering of Surveying and Mapping, 2018, 27(8): 49-52, 59.
PMID |
|
[81] | LI X Y, LIU F, ZHOU H Y, et al. Chinese JIAOLONG’s first scientific cruise in 2013[J]. Journal of Ship Mechanics, 2014, 18(3): 344-355. |
[82] | 刘保华, 丁忠军, 史先鹏, 等. 载人潜水器在深海科学考察中的应用研究进展[J]. 海洋学报, 2015, 37(10):1-10. |
LIU B H, DING Z J, SHI X P, et al. Progress of the application and research of manned submersibles used in deep sea scientific investigations[J]. Haiyang Xuebao, 2015, 37(10): 1-10. | |
[83] |
徐芑南, 胡震, 叶聪, 等. 载人深潜技术与应用的现状和展望[J]. 前瞻科技, 2022, 1(2):36-48.
DOI |
XU Q N, HU Z, YE C, et al. Present situation and prospect of deep-sea manned submersible technology and its application[J]. Science and Technology Foresight, 2022, 1(2): 36-48.
DOI |
|
[84] |
FAVALI P, BERANZOLI L. EMSO: European multidis-ciplinary seafloor observatory[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602(1): 21-27.
DOI URL |
[85] |
PUILLAT I, PERSON R, LEVEQUE C, et al. Standardi-zation prospective in ESONET NoE and a possible implementation on the ANTARES Site[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602(1): 240-245.
DOI URL |
[86] | 陈鹰, 杨灿军, 陶春辉. 海底观测系统[M]. 北京: 海洋出版社, 2006. |
CHEN Y, YANG C J, TAO C H. Deep sea observatory system[M]. Beijing: China Ocean Press, 2006. | |
[87] | PRIEDE I G, SOLAN M, MIENERT J, et al. ESONET-European sea floor observatory network[C]//Oceans’ 04 MTS/IEEE Techno-Ocean’ 04 (IEEE Cat.No.04CH37600). November 09-12, 2004, Kobe, Japan. IEEE, 2005: 2155-2163. |
[88] |
MICHAELIS W, SEIFERT R, NAUHAUS K, et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5583): 1013-1015.
PMID |
[89] |
STAROSTENKO V I, RUSAKOV O M, SHNYUKOV E F, et al. Methane in the northern Black Sea: Characterization of its geomorphological and geological environments[J]. Geological Society, London, Special Publications, 2010, 340(1): 57-75.
DOI URL |
[90] | MAU S, RÖMER M, TORRES M E, et al. Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden[J]. Scientific Reports, 2017, 7: 42997. |
[91] |
RIEDEL M, NOVOSEL I, SPENCE G D, et al. Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin[J]. Geological Society of America Bulletin, 2006, 118(1/2): 23-38.
DOI URL |
[92] |
LAPHAM L L, CHANTON J P, CHAPMAN R, et al. Methane under-saturated fluids in deep-sea sediments: Implications for gas hydrate stability and rates of dissolution[J]. Earth and Planetary Science Letters, 2010, 298(3/4): 275-285.
DOI URL |
[93] | 海洋地质国家重点实验室同济大学. 海底科学观测的国际进展[M]. 上海: 同济大学出版社, 2017. |
State Key Laboratory of Marine Geology Tongji University. International advances in seafloor scientific observations[M]. Shanghai: Tongji University Press, 2017. | |
[94] |
MACELLONI L, LUTKEN C B, GARG S, et al. Heat-flow regimes and the hydrate stability zone of a transient, thermogenic, fault-controlled hydrate system (Woolsey Mound northern Gulf of Mexico)[J]. Marine and Petroleum Geology, 2015, 59: 491-504.
DOI URL |
[95] |
MACELLONI L, SIMONETTI A, KNAPP J H, et al. Multiple resolution seismic imaging of a shallow hydrocarbon plumbing system, Woolsey Mound, Northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 38(1): 128-142.
DOI URL |
[96] | LUTKEN C. Hydrate research activities that both support and derive from the monitoring station/sea-floor observatory, Mississippi Canyon 118, northern Gulf of Mexico[R]//Semiannual Progress Report, DOE Award No.: DE-FC26-06NT42877. 2013: 1-66. |
[97] |
RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168.
DOI URL |
[1] | YU Lei, LI Sanzhong, SUO Yanhui, WANG Xiujuan. Carbon cycling in costal ocean and CO2 negative emissions [J]. Journal of Marine Sciences, 2023, 41(1): 14-25. |
[2] | WANG Jiuyao, ZHOU Jieqiong, WU Ziyin, ZHU Chao, ZHAO Di‘’neng, . Wavelet decomposition of small-scale submarine sand wave based on bottom-moored in situ observation [J]. Journal of Marine Sciences, 2022, 40(2): 32-41. |
[3] | LU Yi, CHU Fengyou, DONG Yanhui, ZHU Zhimin, ZHU Jihao, LU Jianggu. Formation of nodules on continental slopes in thenortheast of the South China Sea and itsimplications for cold seep [J]. Journal of Marine Sciences, 2020, 38(2): 16-25. |
[4] | WANG Wei, GAO Jin-yao, SHEN Zhong-yan, ZHANG Tao. Formation and storage conditions of gas hydrate and resource assessment of Ross Sea [J]. Journal of Marine Sciences, 2015, 33(1): 16-24. |
[5] | YANG Rui, YAN Pin, WU Neng-you, QIAO Shao-hua, SU Ming, LIANG Jin-qiang, GUO Pan, HUO Yuan-yuan. Seismic reflecting characteristics of fluid and its effect on gas hydrate distribution in the Shenhu Area, South China Sea [J]. Journal of Marine Sciences, 2014, 32(4): 19-26. |
[6] | GENG Ming-hui, GUAN Yong-xian, SONG Hai-bin, CHEN Jiang-xin. Preliminary geophysical studies of the natural gas seepage systems in the northern South China Sea [J]. Journal of Marine Sciences, 2014, 32(2): 46-52. |
[7] | WANG Yan-mei, HAN Bing, WU Neng-you, ZHAO Ming-hui. Rare earth elements geochemical characteristics of natural gas hydrates in Shenhu Area of the northern South China Sea [J]. Journal of Marine Sciences, 2012, 30(3): 60-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||