海底天然气水合物及冷泉流体渗漏的原位观测技术

刘莉萍, 初凤友, 郭磊, 李小虎

海洋学研究 ›› 2023, Vol. 41 ›› Issue (1) : 26-44.

PDF(4566 KB)
PDF(4566 KB)
海洋学研究 ›› 2023, Vol. 41 ›› Issue (1) : 26-44. DOI: 10.3969-j.issn.1001-909X.2023.01.003
综述

海底天然气水合物及冷泉流体渗漏的原位观测技术

作者信息 +

Explorations of marine gas hydrate deposits and the signatures of hydrocarbon venting using in situ techniques

Author information +
文章历史 +

摘要

海底天然气水合物藏是天然的巨型碳储藏库,是深部甲烷等烃类气体运移至海底过程中暂时的碳储,是地球碳循环过程的重要一环。冷泉通常与海底天然气水合物藏分解密切相关,是深源或浅层气及水合物分解气在海底发生渗漏的现象。该文根据国内外天然气水合物及冷泉系统勘查的最新动向,综述了与水合物及冷泉流体渗漏相关的羽状流、运移通道、海底微地形地貌等要素的海底原位观测技术,主要包括:走航式及坐底式原位观测、海面及低空渗漏甲烷观测、海底可视化观测、与水合物及冷泉相关的海底观测网络等。综合使用原位观测技术可以更细致、全面地描绘水合物和冷泉系统的时空“景象”,更好地协助厘清海底渗漏甲烷的归趋,拓展人类对深海独特生命绿洲的认知。

Abstract

Marine gas hydrate deposits are significant temporal reservoirs for hydrocarbons migrating from deep sources. This is crucial to our understanding of ocean carbon cycling. The cold seep, a geological process regarding gas leakage from deep or shallow sources, is usually linked with gas hydrate decomposition. In this thesis, we reviewed the latest applications of in situ monitoring and detecting methods regarding the leakage plumes, migration pathways, and seafloor geomorphologies associated with gas hydrate and cold seep systems, primarily including vessel-and land-based gas plume measurements, surface ocean-lower atmosphere hydrocarbon emission detections, seafloor visualization techniques, and in situ observation networks. The integrated applications of these in situ observation methods provide a nuanced view of the temporal and spatial variability of hydrate and cold seep systems, facilitate understanding of the fate of hydrocarbons, and expand our knowledge of cold-seep biota in a watery desert.

关键词

水合物 / 冷泉 / 碳循环 / 原位探测 / 海底观测网络

Key words

gas hydrate / cold seep / carbon cycling / in situ observation / cabled observatory network

引用本文

导出引用
刘莉萍, 初凤友, 郭磊, . 海底天然气水合物及冷泉流体渗漏的原位观测技术[J]. 海洋学研究. 2023, 41(1): 26-44 https://doi.org/10.3969-j.issn.1001-909X.2023.01.003
LIU Liping, CHU Fengyou, GUO Lei, et al. Explorations of marine gas hydrate deposits and the signatures of hydrocarbon venting using in situ techniques[J]. Journal of Marine Sciences. 2023, 41(1): 26-44 https://doi.org/10.3969-j.issn.1001-909X.2023.01.003
中图分类号: P744.4   

参考文献

[1]
THATCHER K E, WESTBROOK G K, SARKAR S, et al. Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: Timing, rates, and geological controls[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(1): 22-38.
[2]
LIU L P, RYU B, SUN Z L, et al. Monitoring and research on environmental impacts related to marine natural gas hydrates: Review and future perspective[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 82-107.
[3]
TALUKDER A R. Review of submarine cold seep plumbing systems: Leakage to seepage and venting[J]. Terra Nova, 2012, 24(4): 255-272.
[4]
吴能友. 天然气水合物运聚体系:理论、方法与实践[M]. 合肥: 安徽科学技术出版社, 2020.
WU N Y. Gas hydrate migration and accumulation system: Theory, method and practice[M]. Hefei: Anhui Science & Technology Publishing House, 2020.
[5]
BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215.
[6]
BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30.
[7]
VAN DOVER C L, AHARON P, BERNHARD J M, et al. Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(2): 281-300.
[8]
HOVLAND M, SVENSEN H. Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine Geology, 2006, 228(1-4): 15-23.
[9]
ANDREASSEN K, HUBBARD A, WINSBORROW M, et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor[J]. Science, 2017, 356(6341): 948-953.
Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.Copyright © 2017, American Association for the Advancement of Science.
[10]
刘玉山, 祝有海, 吴必豪. 更具开发前景的浅成天然气水合物[J]. 海洋地质前沿, 2016, 32(4):24-30.
LIU Y S, ZHU Y H, WU B H. Shallow gas hydrates, a type of hydrate deposits more suitable for production[J]. Marine Geology Frontiers, 2016, 32(4): 24-30.
[11]
LIU L P, CHU F Y, WU N Y, et al. Gas sources, migration, and accumulation systems: The shallow subsurface and near-seafloor gas hydrate deposits[J]. Energies, 2022, 15(19): 6921.
Compared with the deeply buried marine gas hydrate deposits, gas hydrates in the shallow subsurface, close to and at the seafloor, have attracted more attention owing to their concentrated distribution, high saturation, and easy access. They accumulate at relatively shallow depths <100–120 m and occur as gas hydrate-bearing mounds (also known as hydrate outcrops, pingoes) at the seafloor derived from the growth of hydrates in the shallow subsurface or as pure hydrate chunks formed by gas leakage. This paper reviews and summarizes such gas hydrate systems globally from the perspective of gas sources, migration pathways, and accumulation processes. Here, we divided them into four categories: fault-chimney-controlled, diapir-fault-controlled, fault-controlled, and submarine mud volcano-controlled deposits. Gas chimneys originate immediately above the restricted regions, mostly affected by faults where high gas concentrations trigger elevated pore fluid pressures. Diapirism derives a dendritic network of growth faults facilitating focused gas discharge and hydrate formation near the seafloor. Furthermore, pre-existing faults or fractures created by overpressured gas from greater depths in accretionary tectonics at convergent margins act as preferential pathways channeling free gas upwards to the seafloor. Gas flux rates decrease from the submarine mud volcano center to its margins, creating a concentric pattern of distributing temperature, gas concentrations, and hydrate contents in shallow sediments around the mud volcano. Hydrate-bound hydrocarbons are commonly of thermogenic origin and correspond to high-background geothermal conditions, whereas microbial gas is dominant in a few cases. The presence of heavier hydrocarbons mitigates the inhibition of hydrate formation by salt or heat. Fluid migration and pathways could be compared to the “blood” and “bones” in an organic system, respectively. The root of a pathway serves as the “heart” that gathers and provides considerable free gas concentrations in a restricted area, thereby triggering pore fluid pressures as one important drive force for focused fluid flow in impermeable sediments (the organic system). Besides the suitable temperature and pressure conditions, a prerequisite for the formation and stability of hydrate deposits in the shallow subsurface and at the seafloor is the sufficient supply of gas-rich fluids through the hydrate stability zone. Thus, the proportion of gas migrating from deep sources is significantly larger than that trapped in hydrates. As such, such marine hydrate deposits seem more like temporary carbon storage rather than the main culprit for climate warming at least in a short period.
[12]
FREIRE A F M, MATSUMOTO R, SANTOS L A. Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea[J]. Marine and Petroleum Geology, 2011, 28(10): 1967-1978.
[13]
SOLOMON E A, KASTNER M, JANNASCH H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope[J]. Earth and Planetary Science Letters, 2008, 270(1/2): 95-105.
[14]
WAAGE M, PORTNOV A, SEROV P, et al. Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(2): 630-650.
[15]
PHILIP B T, DENNY A R, SOLOMON E A, et al. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 1182-1196.
[16]
DE BEER D, SAUTER E, NIEMANN H, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano[J]. Limnology and Oceanography, 2006, 51(3): 1315-1331.
[17]
BOHRMANN G, TORRES M E. Gas hydrates in marine sediments[M]//Marine Geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 481-512.
[18]
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513.
[19]
MATSUMOTO R, RYU B J, LEE S R, et al. Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia and Oceania region[J]. Marine and Petroleum Geology, 2011, 28(10): 1751-1767.
[20]
SU M, SHA Z B, ZHANG C M, et al. Types, characte-ristics and significances of migrating pathways of gas-bearing fluids in the Shenhu area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(1): 219-231.
[21]
SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103: 1889-1916.
[22]
FISCHER D, MOGOLLÓN J M, STRASSER M, et al. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage[J]. Nature Geoscience, 2013, 6(8): 647-651.
[23]
THOMSEN L, BARNES C, BEST M, et al. Ocean circulation promotes methane release from gas hydrate outcrops at the NEPTUNE Canada Barkley Canyon node[J]. Geophysical Research Letters, 2012, 39(16): L16605.
[24]
HORNBACH M J, RUPPEL C, VAN DOVER C L. Three-dimensional structure of fluid conduits sustaining an active deep marine cold seep[J]. Geophysical Research Letters, 2007, 34(5): 508-512.
[25]
NAUDTS L, GREINERT J, POORT J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive-versus bubble-released methane[J]. Marine Geology, 2010, 272(1-4): 233-250.
[26]
MAZZINI A, ETIOPE G. Mud volcanism: An updated review[J]. Earth-Science Reviews, 2017, 168: 81-112.
[27]
WEI J G, PAPE T, SULTAN N, et al. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin-Results and interpretation from shallow drilling[J]. Marine and Petroleum Geology, 2015, 59: 359-370.
[28]
VAN WEERING T C E, DULLO C, HENRIET J P. An introduction to geosphere-biosphere coupling; cold seep related carbonate and mound formation and ecology[J]. Marine Geology, 2003, 198(1/2): 1-3.
[29]
SIBUET M, OLU K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(1-3): 517-567.
[30]
USSLER W III, PAULL C K. Ion exclusion associated with marine gas hydrate deposits[M] //PAULLC K, DILLONW P. Natural gas hydrates: Occurrence, distribution and detection. Washington, D. C.: American Geophysical Union, 2013: 41-51.
[31]
张光学, 梁金强, 张明, 等. 海洋天然气水合物地震联合探测[M]. 北京: 地质出版社, 2014.
ZHANG G X, LIANG J Q, ZHANG M, et al. Combined seismic survey on marine gas hydrates[M]. Beijing: Geological Publishing House, 2014.
[32]
陈林, 宋海斌. 海底天然气渗漏的地球物理特征及识别方法[J]. 地球物理学进展, 2005, 20(4):1067-1073.
CHEN L, SONG H B. Geophysical features and identification of natural gas seepage in marine environment[J]. Progress in Geophysics, 2005, 20(4): 1067-1073.
[33]
刘伯然, 宋海斌, 关永贤, 等. 南海东北部陆坡冷泉系统的浅地层剖面特征与分析[J]. 地球物理学报, 2015, 58(1):247-256.
LIU B R, SONG H B, GUAN Y X, et al. Characteristics and formation mechanism of cold seep system in the northeastern continental slope of South China Sea from sub-bottom profiler data[J]. Chinese Journal of Geophysics, 2015, 58(1): 247-256.
[34]
骆迪, 蔡峰, 闫桂京, 等. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿, 2020, 36(9):101-108.
LUO D, CAI F, YAN G J, et al. High resolution seismic method for shallow gas hydrates exploration[J]. Marine Geology Frontiers, 2020, 36(9): 101-108.
[35]
FOUCHER J P, NOUZÉ H, HENRY P. Observation and tentative interpretation of a double BSR on the Nankai slope[J]. Marine Geology, 2002, 187(1/2): 161-175.
[36]
顾兆峰, 刘怀山, 张志珣. 浅层气逸出到海水中的气泡声学探测方法[J]. 海洋地质与第四纪地质, 2008, 28(2):129-135.
GU Z F, LIU H S, ZHANG Z X. Acoustic detecting method for bubbles from shallow gas to sea water[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 129-135.
[37]
梅赛, 赵铁虎, 杨源, 等. 甲烷羽状流水体声学探测及气体运移通量测算[J]. 海洋地质前沿, 2013, 29(3):53-59.
MEI S, ZHAO T H, YANG Y, et al. The water column acoustical detection of methane plume and gas migration flux calculation[J]. Marine Geology Frontiers, 2013, 29(3): 53-59.
[38]
LIU B, CHEN J X, YANG L, et al. Multi-beam and seismic investigations of the active Haima cold seeps, northwestern South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(7): 183-197.
[39]
梅赛, 杨慧良, 孙治雷, 等. 冷泉羽状流多波束水体声学探测技术与应用[J]. 海洋地质与第四纪地质, 2021, 41(4):222-231.
MEI S, YANG H L, SUN Z L, et al. Acoustic detecting technology based on multibeam water column imaging and its application to cold seep plume[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 222-231.
[40]
栾锡武, 刘鸿, 岳保静, 等. 海底冷泉在旁扫声纳图像上的识别[J]. 现代地质, 2010, 24(3):474-480.
摘要
海底冷泉是指来自海底沉积地层(或更深)的气体以喷涌或渗漏的方式注入海洋中的一种海洋地质现象,它普遍发育于主动大陆边缘和被动大陆边缘。海底冷泉研究在天然气水合物、全球气候变化、极端生物群落等研究方面都具有重要意义。利用实测的海上资料,通过分析水体声学剖面上的冷泉气柱、旁扫声纳图像上的亮斑异常以及柱状沉积物样品中天然气水合物等的对应关系,指出旁扫声纳图像上出现的亮斑异常是海底冷泉喷逸的指示。海底冷泉逸出的大量气泡遮蔽海底,从而形成一个强波阻抗界面,这个强波阻抗界面在旁扫声纳图像上形成亮斑异常。通过亮斑异常,可以判定海底冷泉的存在。旁扫声纳可以成为海底冷泉探测的有力方法。
LUAN X W, LIU H, YUE B J, et al. Characteristics of cold seepage on side scan sonar sonogram[J]. Geoscience, 2010, 24(3):474-480.
[41]
魏合龙, 孙治雷, 王利波, 等. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质,2016, 36(1):1-13.
WEI H L, SUN Z L, WANG L B, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 1-13.
[42]
JOHNSON J E, GOLDFINGER C, SUESS E. Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin[J]. Marine Geology, 2003, 202(1/2): 79-120.
[43]
KLAUCKE I, WEINREBE W, PETERSEN C J, et al. Temporal variability of gas seeps offshore New Zealand: Multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin[J]. Marine Geology, 2010, 272(1-4): 49-58.
[44]
韩同刚, 童思友, 陈江欣, 等. 海底羽状流探测方法分析[J]. 地球物理学进展, 2018, 33(5):2113-2125.
HAN T G, TONG S Y, CHEN J X, et al. Analysis of detection methods for submarine plume[J]. Progress in Geophysics, 2018, 33(5): 2113-2125.
[45]
陈江欣, 宋海斌, 关永贤, 等. 海底冷泉的地震海洋学初探[J]. 地球物理学报, 2017, 60(2):604-616.
CHEN J X, SONG H B, GUAN Y X, et al. A preliminary study of submarine cold seeps applying seismic oceano-graphy techniques[J]. Chinese Journal of Geophysics, 2017, 60(2): 604-616.
[46]
赵广涛, 徐翠玲, 张晓东, 等. 海底沉积物-水界面溶解甲烷渗漏通量原位观测研究进展[J]. 中国海洋大学学报, 2014, 44(12):73-81.
ZHAO G T, XU C L, ZHANG X D, et al. Research progress in in-situ observations of dissolved methane seepage fluxed across the water-sediment interface[J]. Periodical of Ocean University of China, 2014, 44(12): 73-81.
[47]
于新生, 李丽娜, 胡亚丽, 等. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10):1030-1037.
YU X S, LI L N, HU Y L, et al. The development of in-situ sensors for dissolved methane measurement in the sea[J]. Advances in Earth Science, 2011, 26(10): 1030-1037.
[48]
AWASHIMA Y, SAITO H, HOAKI T, et al. Development of monitoring system on methane hydrate production[C]//Oceans 2008-MTS/IEEE Kobe Techno-Ocean. April 8-11, 2008, Kobe, Japan. IEEE, 2008: 1-7.
[49]
张鑫, 席世川. 激光拉曼光谱技术对深海极端环境流体-岩石相互作用的启示[J]. 矿物岩石地球化学通报, 2022, 41(1):45-56,6.
ZHANG X, XI S C. Inspiration of laser Raman spectroscopy to the fluid-rock interaction in deep-sea extreme environment[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 45-56, 6.
[50]
胡刚, 赵铁虎, 章雪挺, 等. 天然气水合物赋存区近海底环境原位观测系统集成与实现[J]. 海洋地质前沿, 2015, 31(6):30-35.
HU G, ZHAO T H, ZHANG X T, et al. Integration and implementation of seabed environment in situ monitoring systems in natural gas hydrate area[J]. Marine Geology Frontiers, 2015, 31(6): 30-35.
[51]
赵广涛, 于新生, 李欣, 等. Benvir:一个深海海底边界层原位监测装置[J]. 高技术通讯, 2015, 25(1):54-60.
ZHAO G T, YU X S, LI X, et al. Benvir: A in situ deep-sea observation system for benthic enviromental monitoring[J]. Chinese High Technology Letters, 2015, 25(1): 54-60.
[52]
董一飞, 罗文造, 梁前勇, 等. 坐底式潜标观测系统及其在天然气水合物区的试验性应用[J]. 海洋地质与第四纪地质, 2017, 37(5):195-203.
DONG Y F, LUO W Z, LIANG Q Y, et al. A newly developed bottom-supported submersible buoyant system and its testing application to a natural gas hydrate area[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 195-203.
[53]
李彬, 崔胜国, 唐实, 等. 深海生态过程长期定点观测系统研发及冷泉区科考应用[J]. 高技术通讯, 2019, 29(7):675-684.
LI B, CUI S G, TANG S, et al. Development and application of the long-term fixed point observation system of deep-sea ecological process[J]. Chinese High Technology Letters, 2019, 29(7): 675-684.
[54]
MARTENS C S, MENDLOVITZ H P, SEIM H, et al. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 129: 41-52.
[55]
ARATA N, NAGAKUBO S, YAMAMOTO K, et al. Environmental impact assessment studies on Japan’s methane hydrate R&D Program[C]//Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 2011: 1-8.
[56]
薛钢, 刘延俊, 薛祎凡, 等. 集成水力翼板的深海着陆器水动力特性研究与结构优化[J]. 机械工程学报, 2022, 58:1-15.
XUE G, LIU Y J, XUE Y F, et al. Hydrodynamic characteristics research and structure optimization of hadal lander with hydrofoil[J]. Journal of Mechanical Engineering, 2022, 58: 1-15.
[57]
SCHNEIDER VON DEIMLING J, REHDER G, GREINERT J, et al. Quantification of seep-related methane gas emissions at Tommeliten, North Sea[J]. Continental Shelf Research, 2011, 31(7/8): 867-878.
[58]
邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602.
DI P F, FENG D, GAO L B, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites[J]. Progress in Geophysics, 2008, 23(5): 1592-1602.
[59]
GREINERT J. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant[J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07048.
[60]
SCHNEIDER VON DEIMLING J, GREINERT J, CHAPMAN N R, et al. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents[J]. Limnology and Oceanography: Methods, 2010, 8(5): 155-171.
[61]
TRYON M D, BROWN K M, TORRES M E, et al. Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia[J]. Geology, 1999, 27(12): 1075.
[62]
邸鹏飞, 陈庆华, 陈多福. 海底冷泉渗漏气体流量原位在线测量技术研究[J]. 热带海洋学报, 2012, 31(5):83-87.
摘要
海底冷泉渗漏气体原位在线测量装置是采用体积排空法的原理测定海底冷泉天然气渗漏通量。原位在线测量装置是由气体流量收集测定系统、数据存储控制系统和数据提取、分析、处理软件系统组成。气体流量收集测定系统用来测定冷泉天然气渗漏通量, 数据存储控制系统用来存储数据和控制电磁阀的打开与关闭, 数据提取、分析、处理件系统用来读取、分析、处理存储的流量数据和设置原位在线测量装置的运行时间。通过实验测试获得了原位在线测量装置的各项参数, 其流速测定范围为0—15300mL?min?1, 测量误差为±1%, 为研究海底冷泉天然气渗漏流量变化提供了新的技术和方法。
DI P F, CHEN Q H, CHEN D F. In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study[J]. Journal of Tropical Oceanography, 2012, 31(5): 83-87.
[63]
CRUTCHLEY G J, BERNDT C, GEIGER S, et al. Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA[J]. Geology, 2013, 41(5): 551-554.
[64]
SUESS E, TORRES M E, BOHRMANN G, et al. Sea floor methane hydrates at hydrate ridge, Cascadia margin[M] //PAULLC K, DILLONW P. Natural gas hydrates: Occurrence, distribution, and detection. Washington, D. C.: American Geophysical Union, 2001: 87-98.
[65]
TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1/2): 225-241.
[66]
JATIAULT R, DHONT D, LONCKE L, et al. Monitoring of natural oil seepage in the Lower Congo Basin using SAR observations[J]. Remote Sensing of Environment, 2017, 191: 258-272.
[67]
SOLOMON E A, KASTNER M, MACDONALD I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico[J]. Nature Geoscience, 2009, 2(8): 561-565.
[68]
JONES A T, LOGAN G A, KENNARD J M, et al. Reassessing potential origins of Synthetic Aperture Radar (SAR) slicks from the Timor Sea region of the north west shelf on the basis of field and ancillary data[J]. The APPEA Journal, 2005, 45(1): 311-332.
The Timor Sea region of the North West Shelf is one of natural hydrocarbon accumulation and seepage, which has been investigated by integrated remote sensing studies in the past 10 years. One of the primary tools incorporated in these studies has been Synthetic Aperture Radar (SAR). During a recent Geoscience Australia marine survey to the Yampi Shelf area, active hydrocarbon seepage was directly observed in the form of gas plumes rising from the sea-floor. Active seepage was not observed in areas associated with dense clusters of elongated to irregularshaped features in the SAR data, which have previously been interpreted as natural hydrocarbon seepage slicks. These slicks, and another dense cluster of slicks across the Browse–Bonaparte Basin Transition Zone, are reassessed in the context of alternative formational processes.Mapping of bathymetric channels directly beneath the SAR slicks using multi-beam swath bathymetry and measurement of tidal currents using an acoustic doppler current profiler indicates that tidal current flows may have contributed to slick formation over the Yampi Shelf headland. In contrast, coral spawning may have contributed to the formation of annular to crescent-shaped SAR slicks associated with submerged reefs and shoals over the nearby transition zone. Subsequent to identifying potential alternative origins for these two types of SAR features, the remaining slicks across the area were re-categorised on the basis of their size and shape in the context of ancillary hydrographic and environmental data. An alternative nonseepage origin was established for most of the 381 SAR slicks previously identified as being related to natural hydrocarbon seepage. This may necessitate a significant downgrading of the extent and frequency of active hydrocarbon (particularly oil) seepage in the region.
[69]
SASSEN R, LOSH S L, CATHLESIII L, et al. Massive vein-filling gas hydrate: Relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico[J]. Marine and Petroleum Geology, 2001, 18(5): 551-560.
[70]
CHAPMAN R, POHLMAN J, COFFIN R, et al. Thermogenic gas hydrates in the northern Cascadia margin[J]. Eos, Transactions American Geophysical Union, 2004, 85(38): 361-365.
[71]
曾雅琦, 王正海, 邢学文, 等. 海水背景下不同浓度的甲烷含量高光谱定量反演[J]. 遥感学报, 2020, 24(12):1525-1533.
ZENG Y Q, WANG Z H, XING X W, et al. Hyperspectral quantitative retrieval of methane content in different concentrations in the seawater background[J]. Journal of Remote Sensing, 2020, 24(12): 1525-1533.
[72]
卢振权, 强祖基, 吴必豪. 利用卫星热红外遥感探测南海天然气水合物[J]. 地质学报, 2002, 76(1):100-106,146.
LU Z Q, QIANG Z J, WU B H. Exploring gas hydrates by satellite-based thermal infrared remote sensing in the South China Sea[J]. Acta Geologica Sinica, 2002, 76(1): 100-106, 146.
[73]
LEIFER I, BOLES J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment[J]. Marine and Petroleum Geology, 2005, 22(4): 551-568.
[74]
马立杰. 利用卫星遥感探测海域天然气水合物[D]. 青岛: 中国科学院研究生院(海洋研究所), 2005.
MA L J. Detection of oceanic gas hydrates by satellite remote sensing[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2005.
[75]
张灿影, 郭琳, 鲁景亮, 等. 潜水器在深海生物多样性研究中的应用进展[J]. 海洋科学, 2019, 43(1):112-120.
ZHANG C Y, GUO L, LU J L, et al. Progress of the submersible in deep-sea biodiversity research[J]. Marine Sciences, 2019, 43(1): 112-120.
[76]
张汉泉, 吴庐山, 张锦炜. 海底可视技术在天然气水合物勘查中的应用[J]. 地质通报, 2005, 24(2):185-188.
ZHANG H Q, WU L S, ZHANG J W. Application of the sea-floor visualization technique in gas hydrate exploration[J]. Regional Geology of China, 2005, 24(2): 185-188.
[77]
张伙带, 韩冰, 刘丽强. 海底观测新技术[M]. 北京: 海洋出版社, 2019.
ZHANG H D, HAN B, LIU L Q. New technologies for seafloor observation[M]. Beijing: China Ocean Press, 2019.
[78]
LIANG Q Y, HU Y, FENG D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41.
[79]
王冰, 宋永东, 杜增丰, 等. 基于“发现”号ROV的近海底综合声学调查系统及其在台西南冷泉调查中的应用[J]. 海洋与湖沼, 2020, 51(4):889-898.
WANG B, SONG Y D, DU Z F, et al. An integrated underwater acoustic survey system and its application in the investigation of the cold seep site off southwestern Taiwan[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 889-898.
[80]
冯强强, 温明明, 牟泽霖, 等. 声学深拖系统在海底冷泉调查中的应用[J]. 测绘工程, 2018, 27(8):49-52,59.
摘要
Numerous articles have recently reported on gas seepage offshore Svalbard, because the gas emission from these Arctic sediments was thought to result from gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. We report on findings of a much broader seepage area, extending from 74 degrees to 79 degrees, where more than a thousand gas discharge sites were imaged as acoustic flares. The gas discharge occurs in water depths at and shallower than the upper edge of the gas hydrate stability zone and generates a dissolved methane plume that is hundreds of kilometer in length. Data collected in the summer of 2015 revealed that 0.02-7.7% of the dissolved methane was aerobically oxidized by microbes and a minor fraction (0.07%) was transferred to the atmosphere during periods of low wind speeds. Most flares were detected in the vicinity of the Hornsund Fracture Zone, leading us to postulate that the gas ascends along this fracture zone. The methane discharges on bathymetric highs characterized by sonic hard grounds, whereas glaciomarine and Holocene sediments in the troughs apparently limit seepage. The large scale seepage reported here is not caused by anthropogenic warming.
FENG Q Q, WEN M M, MU Z L, et al. Application of acoustic deep tow to the cold seep investigation[J]. Engineering of Surveying and Mapping, 2018, 27(8): 49-52, 59.
[81]
LI X Y, LIU F, ZHOU H Y, et al. Chinese JIAOLONG’s first scientific cruise in 2013[J]. Journal of Ship Mechanics, 2014, 18(3): 344-355.
[82]
刘保华, 丁忠军, 史先鹏, 等. 载人潜水器在深海科学考察中的应用研究进展[J]. 海洋学报, 2015, 37(10):1-10.
LIU B H, DING Z J, SHI X P, et al. Progress of the application and research of manned submersibles used in deep sea scientific investigations[J]. Haiyang Xuebao, 2015, 37(10): 1-10.
[83]
徐芑南, 胡震, 叶聪, 等. 载人深潜技术与应用的现状和展望[J]. 前瞻科技, 2022, 1(2):36-48.
摘要
在分析国外载人深潜技术的发展历程和最新进展的基础上,系统总结了中国载人深潜技术取得的主要成就和积累的经验,同时详细介绍了载人深潜领域日益拓展的应用场景,对中国载人深潜未来的主要任务和运行模式提出展望,为后续发展提供参考。
XU Q N, HU Z, YE C, et al. Present situation and prospect of deep-sea manned submersible technology and its application[J]. Science and Technology Foresight, 2022, 1(2): 36-48.

Upon the analysis of the development history and the latest progress in the deep-sea manned submersible technology in foreign countries, the main achievements and accumulated experience of this technology in China are systematically summarized. Meanwhile, the ever-expanding application scenes in this regard are introduced in detail, and the main tasks and operation modes of deep-sea manned submersibles in China are predicted to provide a reference for future development.

[84]
FAVALI P, BERANZOLI L. EMSO: European multidis-ciplinary seafloor observatory[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602(1): 21-27.
[85]
PUILLAT I, PERSON R, LEVEQUE C, et al. Standardi-zation prospective in ESONET NoE and a possible implementation on the ANTARES Site[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602(1): 240-245.
[86]
陈鹰, 杨灿军, 陶春辉. 海底观测系统[M]. 北京: 海洋出版社, 2006.
CHEN Y, YANG C J, TAO C H. Deep sea observatory system[M]. Beijing: China Ocean Press, 2006.
[87]
PRIEDE I G, SOLAN M, MIENERT J, et al. ESONET-European sea floor observatory network[C]//Oceans’ 04 MTS/IEEE Techno-Ocean’ 04 (IEEE Cat.No.04CH37600). November 09-12, 2004, Kobe, Japan. IEEE, 2005: 2155-2163.
[88]
MICHAELIS W, SEIFERT R, NAUHAUS K, et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5583): 1013-1015.
Massive microbial mats covering up to 4-meter-high carbonate buildups prosper at methane seeps in anoxic waters of the northwestern Black Sea shelf. Strong 13C depletions indicate an incorporation of methane carbon into carbonates, bulk biomass, and specific lipids. The mats mainly consist of densely aggregated archaea (phylogenetic ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). If incubated in vitro, these mats perform anaerobic oxidation of methane coupled to sulfate reduction. Obviously, anaerobic microbial consortia can generate both carbonate precipitation and substantial biomass accumulation, which has implications for our understanding of carbon cycling during earlier periods of Earth's history.
[89]
STAROSTENKO V I, RUSAKOV O M, SHNYUKOV E F, et al. Methane in the northern Black Sea: Characterization of its geomorphological and geological environments[J]. Geological Society, London, Special Publications, 2010, 340(1): 57-75.
[90]
MAU S, RÖMER M, TORRES M E, et al. Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden[J]. Scientific Reports, 2017, 7: 42997.
[91]
RIEDEL M, NOVOSEL I, SPENCE G D, et al. Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin[J]. Geological Society of America Bulletin, 2006, 118(1/2): 23-38.
[92]
LAPHAM L L, CHANTON J P, CHAPMAN R, et al. Methane under-saturated fluids in deep-sea sediments: Implications for gas hydrate stability and rates of dissolution[J]. Earth and Planetary Science Letters, 2010, 298(3/4): 275-285.
[93]
海洋地质国家重点实验室同济大学. 海底科学观测的国际进展[M]. 上海: 同济大学出版社, 2017.
State Key Laboratory of Marine Geology Tongji University. International advances in seafloor scientific observations[M]. Shanghai: Tongji University Press, 2017.
[94]
MACELLONI L, LUTKEN C B, GARG S, et al. Heat-flow regimes and the hydrate stability zone of a transient, thermogenic, fault-controlled hydrate system (Woolsey Mound northern Gulf of Mexico)[J]. Marine and Petroleum Geology, 2015, 59: 491-504.
[95]
MACELLONI L, SIMONETTI A, KNAPP J H, et al. Multiple resolution seismic imaging of a shallow hydrocarbon plumbing system, Woolsey Mound, Northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 38(1): 128-142.
[96]
LUTKEN C. Hydrate research activities that both support and derive from the monitoring station/sea-floor observatory, Mississippi Canyon 118, northern Gulf of Mexico[R]//Semiannual Progress Report, DOE Award No.: DE-FC26-06NT42877. 2013: 1-66.
[97]
RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168.

基金

中央级公益性科研院所基本科研业务费专项资金项目(JB2303)
中国大洋协会项目(DY135-N1-1)
中国大洋协会项目(DY135-N2-1)
中国大洋协会项目(DY135-N1-1-01)

编辑: 段焱
PDF(4566 KB)

Accesses

Citation

Detail

段落导航
相关文章

/