-
Artificial intelligence in oceanography has demonstrated a great potential with the explosive growth of ocean observation data and numerical model products. This article first reviews the history of ocean big data development, and then introduces in detail the current status of artificial intelligence in oceanography applications including identifying ocean phenomenon, forecasting ocean variables and phenomenon, estimating dynamic parameters, correcting forecast errors, and solving dynamic equations. Specifically, this article elaborates the research on the intelligent identification of ocean eddies, internal waves and sea ice, the intelligent prediction of sea surface temperatures, El Ni?o-Southern Oscillation, storm surges, waves and currents, the intelligent estimation of ocean turbulence parameterization for numerical models, and the intelligent correction of waves and current forecast errors. In addition, it discusses the recent progress of applying physical mechanism fusion and Fourier neural operator for solving ocean dynamic equations. This article is based on the current status of artificial intelligence in oceanography and aims to provide a comprehensive demonstration of the advantages and potential of applying artificial intelligence methods in the field of oceanography. With the two emerging research hotspots: digital twin oceans and artificial intelligence large models, the future development direction of artificial intelligence provides enlightenment and reference for interested scientists and researchers.
-
Waves are one of the most important phenomena in the ocean. The accurate and quick updated wave forecasting is of crucial significance for ensuring marine activities safety. The development of wave forecast is presented, including the traditional statistical wave forecasting methods, numerical wave prediction models, and the rapidly developing artificial intelligence (AI) wave forecasting methods. Currently, AI wave forecast models have been demonstrated unique advantages in terms of computational efficiency and adaptive forecasting accuracy, and they are gradually being applied in practical wave forecasting operations, transitioning from the research stage. However, they also have limitations, including limited forecasting elements, underestimation of extreme wave conditions, and weak forecasting generalization ability. Based on the characteristics of AI wave prediction, key scientific and technological issues that need to be addressed in current AI wave forecasting are proposed. These include efficient utilization of observational data, incorporation of prior physical knowledge, and enhancement of AI model safety and generalization ability.
-
Histopathological indexes can be used to assess health of organism, but their application faces challenges such as low efficiency, high cost and strong subjectivity. Introducing artificial intelligence (AI) technology into histopathological analysis of biological tissues can leverage its high-throughput image analysis capabilities, overcoming the limitations in assessing and monitoring marine organism health. Based on our review on health assessment indicators of marine organisms, the application of AI in image analysis, and the use of AI for histopathological image processing, a deep learning-based histopathological image analysis approach was proposed using gill tissues of marine mussels as representative. Through a series of processes such as training, validation, and prediction of histopathology images, it was determined that the Res-UNet deep learning model can efficiently and accurately quantify histopathological damage in mussels’ gills. An automated, high-throughput, and less subjective workflow based on deep learning was finally established, offering new ideas and techniques for marine organism health assessment and marine monitoring.
-
Prospect of artificial intelligence in oceanographyDONG Changming, WANG Ziyun, XIE Huarong, XU Guangjun, HAN Guoqing, ZHOU Shuyi, XIE Wenhong, SHEN Xiangyu, HAN Lei2024, 42(3):2-27. DOI:10.3969/j.issn.1001-909X.2024.03.001
-
Progress and challenges of artificial intelligence wave forecastingLU Yuting, GUO Wenkang, DING Jun, WANG Linfeng, LI Xiaohui, WANG Jiuke2024, 42(3):28-37. DOI:10.3969/j.issn.1001-909X.2024.03.002
-
Recent developments in AI-based oceanic eddy identificationXU Guangjun, SHI Yucheng, YU Yang, XIE Huarong, XIE Wenhong, LIU Jingyuan, LIN Xiayan, LIU Yu, DONG Changming2024, 42(3):38-50. DOI:10.3969/j.issn.1001-909X.2024.03.003
-
Review of application of deep learning in Indian Ocean Dipole predictionZHENG Mengke, FANG Wei, ZHANG Xiaozhi2024, 42(3):51-63. DOI:10.3969/j.issn.1001-909X.2024.03.004
-
Deep learning-based histopathological analysis and its potential application in marine monitoring: A review and case studyDI Ya’nan, ZHAO Ruoxuan, XU Jianzhou2024, 42(3):64-74. DOI:10.3969/j.issn.1001-909X.2024.03.005
-
Calibration of Sentinel-1 SAR retrieved wind speed based on BP neural network modelNI Hanyue, DONG Changming, LIU Zhenbo, YANG Jingsong, LI Xiaohui, REN Lin2024, 42(3):75-87. DOI:10.3969/j.issn.1001-909X.2024.03.006
-
Intelligent wave forecasting and evaluation along the southeast coast of China based on ConvLSTM methodJIN Yang, HAN Lei, JIN Meibing, DONG Changming2024, 42(3):88-98. DOI:10.3969/j.issn.1001-909X.2024.03.007
-
Rapid intensification forecast of tropical cyclones based on machine learningLUO Tong, HONG Jiacheng2024, 42(3):99-107. DOI:10.3969/j.issn.1001-909X.2024.03.008
-
Prediction of sea level changes along the coast of China using machine learning modelsCHEN Jianheng, XU Dongfeng, YAO Zhixiong2024, 42(3):108-118. DOI:10.3969/j.issn.1001-909X.2024.03.009
-
Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagerySHAO Zhiyuan, ZHAO Jiechen, XIE Longxiang, MU Fangru, XIAO Jing, LIU Minjun, CHEN Xuejing2024, 42(3):119-130. DOI:10.3969/j.issn.1001-909X.2024.03.010
-
Application of convolutional neural network method in evolution of tidal bore hydrodynamic characteristicsWANG Zhihong, QU Ke, YANG Yuanping, WANG Xu, GAO Rongze2024, 42(3):131-141. DOI:10.3969/j.issn.1001-909X.2024.03.011
-
High-precision seafloor topographic mapping based on data-knowledge-driven: An example from the South China SeaLIU Yang, LI Sanzhong, ZOU Zhuoyan, SUO Yanhui, SUN Yi2024, 42(3):142-152. DOI:10.3969/j.issn.1001-909X.2024.03.012
2024,Vol.42 | No.2 | No.1 | ||
2023,Vol.41 | No.4 | No.3 | No.2 | No.1 |
2022,Vol.40 | No.4 | No.3 | No.2 | No.1 |
2021,Vol.39 | No.4 | No.3 | No.2 | No.1 |
2020,Vol.38 | No.4 | No.3 | No.2 | No.1 |
2019,Vol.37 | No.4 | No.3 | No.2 | No.1 |
2018,Vol.36 | No.4 | No.3 | No.2 | No.1 |
2017,Vol.35 | No.4 | No.3 | No.2 | No.1 |
2016,Vol.34 | No.4 | No.3 | No.2 | No.1 |
2015,Vol.33 | No.4 | No.3 | No.2 | No.1 |
2014,Vol.32 | No.4 | No.3 | No.2 | No.1 |
2013,Vol.31 | No.4 | No.3 | No.2 | No.1 |
2012,Vol.30 | No.4 | No.3 | No.2 |
-
ZHUANG Baojiang, TANG Yong, LÜ Xiaohui, YANG Chunguo, WU Zhaocai, LI HeJournal of Marine Sciences. 2024 Vol. 42 (1): 13-22 DOI: 10.3969/j.issn.1001-909X.2024.01.002
-
ZHANG Xudong, QIU Zhongfeng, MAO Kefeng, WANG PenghaoJournal of Marine Sciences. 2024 Vol. 42 (1): 58-68 DOI: 10.3969/j.issn.1001-909X.2024.01.006
-
LIN Lianjie, DONG Changming, JI Yuxiang, LIM KAM SIAN Kenny Thiam Choy, LI Zhaoxin, JIANG Xingliang, CAO Yuhan, GAO Hui, WANG Shengqiang, CAO QianJournal of Marine Sciences. 2024 Vol. 42 (1): 69-82 DOI: 10.3969/j.issn.1001-909X.2024.01.007
-
CHEN Xiangyu, YU Jiangmei, SHEN Yuan, NI Yunlin, LU FanJournal of Marine Sciences. 2024 Vol. 42 (2): 15-25 DOI: 10.3969/j.issn.1001-909X.2024.02.002
-
SU Han, CHUANG Ziwei, ZHANG ChunlingJournal of Marine Sciences. 2024 Vol. 42 (2): 40-54 DOI: 10.3969/j.issn.1001-909X.2024.02.004
-
LI Sheng, XUAN Jiliang, HUANG DajiJournal of Marine Sciences. 2024 Vol. 42 (2): 1-14 DOI: 10.3969/j.issn.1001-909X.2024.02.001
-
Acoustic propagation characteristics of horizontally varying double duct waveguides under Arctic iceKE Lei, WU ShaoweiJournal of Marine Sciences. 2024 Vol. 42 (1): 47-57 DOI: 10.3969/j.issn.1001-909X.2024.01.005
-
WANG Tianyi, DONG Yanhui, CHU Fengyou, SHI Xuefa, LI Xiaohu, SU Rong, ZHANG WeiyanJournal of Marine Sciences. 2024 Vol. 42 (1): 23-35 DOI: 10.3969/j.issn.1001-909X.2024.01.003
-
WU Jiaxing, PENG Qi, ZHANG Zhuo, CHEN Xinying, CHEN Peng, WEN Yajuan, WANG Haocheng, ZHANG LuJournal of Marine Sciences. 2024 Vol. 42 (2): 91-103 DOI: 10.3969/j.issn.1001-909X.2024.02.009
-
YUE Xiaolan, XU Lin, FU Geyi, XU XueweiJournal of Marine Sciences. 2024 Vol. 42 (1): 91-105 DOI: 10.3969/j.issn.1001-909X.2024.01.009
-
JIE Tianyu, ZHOU Jianping, TAO Chunhui, WANG Hanchuang, LI Qianyu, WU Tao, LIU LongJournal of Marine Sciences. 2024 Vol. 42 (1): 1-12 DOI: 10.3969/j.issn.1001-909X.2024.01.001
-
WEN Song, LUO Xiaowen, CAO Kai, YOU WeiJournal of Marine Sciences. 2024 Vol. 42 (2): 62-70 DOI: 10.3969/j.issn.1001-909X.2024.02.006
-
CAO Kai, LUO Xiaowen, WEN Song, YOU WeiJournal of Marine Sciences. 2024 Vol. 42 (2): 71-80 DOI: 10.3969/j.issn.1001-909X.2024.02.007
-
MA Haibo, LAI Xianghua, HU Taojun, FU XiaomingJournal of Marine Sciences. 2024 Vol. 42 (1): 83-90 DOI: 10.3969/j.issn.1001-909X.2024.01.008
-
ZHAO Xuekai, GUO Kaiyuan, ZHOU Yunhao, JIA Liyuan, YANG Zhibo, ZHANG Qinxu, ZHANG MingliangJournal of Marine Sciences. 2024 Vol. 42 (1): 36-46 DOI: 10.3969/j.issn.1001-909X.2024.01.004
-
DONG Changming, WANG Ziyun, XIE Huarong, XU Guangjun, HAN Guoqing, ZHOU Shuyi, XIE Wenhong, SHEN Xiangyu, HAN LeiJournal of Marine Sciences. 2024 Vol. 42 (3): 2-27 DOI: 10.3969/j.issn.1001-909X.2024.03.001
-
XU Xucheng, YU Xing, HU Hang, HE Hu, YU Ya’naJournal of Marine Sciences. 2024 Vol. 42 (2): 104-112 DOI: 10.3969/j.issn.1001-909X.2024.02.010
-
KANG Zhengwu, TU Qianguang, YAN Yunwei, XING XiaogangJournal of Marine Sciences. 2024 Vol. 42 (2): 26-39 DOI: 10.3969/j.issn.1001-909X.2024.02.003
-
WU Wenxiu, XU Xinwen, CHENG Shuxing, ZHAO Chunxu, GUO Youjun, SHEN Chunyan, YAN YunrongJournal of Marine Sciences. 2024 Vol. 42 (1): 106-116 DOI: 10.3969/j.issn.1001-909X.2024.01.010
-
CAO Wenting, ZHANG Huaguo, LI RuiJournal of Marine Sciences. 2021 Vol. 39 (4): 123-131 DOI: 10.3969/j.issn.1001-909X.2021.04.012
-
SONG Wanjiao, ZHANG Peng, SUN Ling, TANG Shihao, ZHOU Fangcheng,Journal of Marine Sciences. 2022 Vol. 40 (2): 10-18 DOI: 10.3969-j.issn.1001-909X.2022.02.002
-
LIU Liping, CHU Fengyou, GUO Lei, LI XiaohuJournal of Marine Sciences. 2023 Vol. 41 (1): 26-44 DOI: 10.3969-j.issn.1001-909X.2023.01.003
-
XIA Hantao, LONG Yuannan, LIU Cheng, LIU XiaojianJournal of Marine Sciences. 2020 Vol. 38 (2): 26-37 DOI: 10.3969/j.issn.1001-909X.2020.02.004
-
ZENG Dingyong, XUAN Jiliang, HUANG Daji, et alJournal of Marine Sciences. 2022 Vol. 40 (1): 12-20 DOI: 10.3969/j.issn.1001-909X.2022.01.002
-
CHEN Jianfang, ZHAI Weidong, WANG Bin, LI Dewang, XIONG Tianqi, JIN Haiyan, LI Hongliang, LIU Qinyu, MIAO Yanyi,Journal of Marine Sciences. 2021 Vol. 39 (4): 11-21 DOI: 10.3969/j.issn.1001-909X.2021.04.002
-
Journal of Marine Sciences. 2021 Vol. 39 (4): 101-108 DOI: 10.3969/j.issn.1001-909X.2021.04.010
-
SUN Jianxiong, ZHANG Wenxiang, SHI BenweiJournal of Marine Sciences. 2022 Vol. 40 (1): 21-32 DOI: 10.3969/j.issn.1001-909X.2022.01.003
-
ZHOU Feng, QIAN Zhouyi, LIU Anqi, MA Xiao, NI Xiaobo, ZENG Dingyong,Journal of Marine Sciences. 2021 Vol. 39 (4): 17-38 DOI: 10.3969/j.issn.1001-909X.2021.04.003
-
CAI Jiaxin, PAN Guofu, CHEN PeixiongJournal of Marine Sciences. 2021 Vol. 39 (3): 63-71 DOI: 10.3969/j.issn.1001-909X.2021.03.007
-
ZHANG Jiaying, ZHOU Feng, TIAN Di, HUANG Ting,Journal of Marine Sciences. 2021 Vol. 39 (3): 1-11 DOI: 10.3969/j.issn.1001-909X.2021.03.001
-
GAO Shun, ZHANG Yingying, YUAN Da, et alJournal of Marine Sciences. 2022 Vol. 40 (1): 81-88 DOI: 10.3969/j.issn.1001-909X.2022.01.009
-
JIN Quan, ZHANG Chuqing, WU Jianbo, ZHANG Xiao, YE Ying, HUANG Yuanfeng, TAO ChunhuiJournal of Marine Sciences. 2021 Vol. 39 (2): 52-59 DOI: 10.3969/j.issn.1001-909X.2021.02.006
-
JIANG Jie, ZHANG Tao, CAI Xiaoxian, WU Zhaocai,Journal of Marine Sciences. 2022 Vol. 40 (2): 42-52 DOI: 10.3969-j.issn.1001-909X.2022.02.005
-
FANG Mingbao, HUANG Jiayu, YANG Wankang, SUN ChunjianJournal of Marine Sciences. 2020 Vol. 38 (4): 80-87 DOI: 10.3969/j.issn.1001-909X.2020.04.009
-
LIU Songnan, XU DongfengJournal of Marine Sciences. 2020 Vol. 38 (2): 1-8 DOI: 10.3969/j.issn.1001-909X.2020.02.001
-
LI YanJournal of Marine Sciences. 2022 Vol. 40 (3): 9-16 DOI: 10.3969-j.issn.1001-909X.2022.03.002
-
Assessment of carbon sink potential and driving factors of island forests on national nature reserveWU Liangxu, ZOU Huimin, CHEN Wei, XU Minghai, CAI Houcai, CHEN Shuyi, LI XianglanJournal of Marine Sciences. 2023 Vol. 41 (1): 96-109 DOI: 10.3969-j.issn.1001-909X.2023.01.008
-
Study on diversity of rocky intertidal benthos community in uninhabited islands in Cangnan, ZhejiangLIU Hanren, LIAO Yibo, SHOU Lu, ZENG Jiangning, TANG Yanbin, LIU Qinghe, TAN Yonghua, L Duian, CHENG JieJournal of Marine Sciences. 2021 Vol. 39 (2): 68-79 DOI: 10.3969/j.issn.1001-909X.2021.02.008
-
ZENG Yulan, LU Douding, WANG Pengbin, GUO Ruoyu, GUAN Weibing, DAI XinfengJournal of Marine Sciences. 2020 Vol. 38 (2): 38-48 DOI: 10.3969/j.issn.1001-909X.2020.02.005