以覆盖黄河口湿地区域的Radarsat-2 SAR全极化影像和Landsat-5 TM影像为例,将4种极化方式的SAR影像与TM影像分别进行融合,采用支持向量机对融合结果进行滨海湿地典型地物土地覆盖分类,并对分类结果进行比较评价,分析不同极化方式的SAR影像与TM影像融合结果在滨海湿地地区的分类能力。实验结果表明:采用与SAR影像融合的方法能够提高TM影像的分类精度,其中HV极化方式的SAR影像与TM影像的融合结果分类精度最高,最适用于滨海湿地土地覆盖分类研究。
Abstract
The supported vector machine was adopted on the coastal wetland land cover classification using fused images of 4-polarization SAR and TM images, the results of classification were compared and evaluated to analyze the capability of different-polarization SAR and TM fused images in coastal wetland area. An area of Yellow River Delta was selected as the experimental area, and a Radarsat-2 full-polarization image and a Landsat-5 TM image were taken as an example. The results of the experiment were analyzed quantitatively, which show that the classification accuracy of the original TM image can be improved by using the SAR-image-fusion method, the classification accuracy of the image fused by the HV-polarization SAR and TM image is the highest, so that the HV polarization is the most suitable polarization of SAR image for fusion and classification research work in coastal wetland area.
关键词
SAR /
全极化 /
TM /
影像融合 /
支持向量机 /
滨海湿地 /
土地覆盖
Key words
SAR /
full polarization /
TM /
image fusion /
SVM /
coastal wetland /
land cover
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LEE J S, GRUNES M R, KWOK R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution [J]. International Journal of Remote Sensing,1994,15(11):2 299-2 311.
[2] MICHELSON D B, LILJEBERG B M, PILESJO P, et al. Comparison of algorithms for classifying Swedish landcover using Landsat TM and ERS-1 SAR data [J]. Remote Sensing of Environment, 2000,71(1):1-15.
[3] SHUPE S M, MARSH S E. Cover and density based vegetation classifications of the Sonoran Desert using Landsat TM and ERS-1 SAR imagery[J]. Remote Sensing of Environment, 2004,93(1):131-149.
[4] ZHU Z, WOODCOCK C E, ROGAN J, et al. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data [J]. Remote Sensing of Environment,2012,117(1):72-82.
[5] CUTLERA M E J, BOYD D S, FOODY G M, et al. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2012,70:66-77.
[6] NI Xin-qiang, CHEN Qi, ZHANG Ping. Automatic SAR image classification based on AdaBoost [J]. Computer Engineering,2008,34(1):190-194.
倪心强,陈琦,张平.基于AdaBoost的SAR图像自动分类[J].计算机工程,2008,34(1):190-194.
[7] GONG Shu-lei, ZHANG Yu-dong, SHEN Shi-zhe, et al. Hybrid algorithm for classification of polarimetric SAR images[J]. Journal of Southeast University: Natural Science Edition,2009,39(1):294-298.
龚淑蕾,张煜东,沈士喆,等.一种极化合成孔径雷达图像分类的混合方法[J].东南大学学报:自然科学版,2009,39(1):294-298.
[8] JIA Yong-hong, LI De-ren, SUN Jia-bing, et al. Comparision of HIS transformation for integrating SAR and TM images[J]. Journal of Remote Sensing,1998,2(2):103-106.
贾永红,李德仁,孙家抦,等.四种IHS变换用于SAR与TM影像复合的比较[J].遥感学报,1998,2(2):103-106.
[9] HAN Zhen, JIN Ya-qiu. Information extraction and classification of typical canopies over the Chongming eastern tidal flat from data fusion of ERS-2 SAR and Landsat ETM+[J]. Marin Environmental Science,2006,25(3):21-24.
韩震,金亚秋.ERS-2 SAR和Landsat ETM+数据融合提取崇明东滩典型地物信息与分类[J].海洋环境科学,2006,25(3):21-24.
[10] CHEN Wei-li, TAO He-ping, LIU Bin-tao. Classification of terrain surfaces using fused images of multi spectral and SAR image based on support vector machine [J]. Journal of Anhui Agricultural Sciences,2010,38(20):10 662-10 664.
陈伟利,陶和平,刘斌涛.基于SVM的多光谱影像与SAR图像融合地物分类研究[J].安徽农业科学,2010,38(20):10 662- 10 664.
[11] FU Zhong-liang, ZHANG Wen-yuan, MENG Qing-xiang. SAR image classification based on SVM with fusion of gray scale and texture features[J]. Journal of Applied Sciences-Electronics Information Engineering,2012,30(5):498-504.
付仲良,张文元,孟庆祥.灰度和纹理特征组合的SAR影像SVM分类[J].应用科学学报,2012,30(5):498-504.
[12] WANG An-qi, ZHOU De-min, GONG Hui-li. A research on method of wetland vegetation identification and classification based on radar backscatter characteristics[J]. Remote Sensing Information,2012,27(2):15-19.
王安琪,周德民,宫辉力.基于雷达后向散射特性进行湿地植被识别与分类的方法研究[J].遥感信息,2012,27(2):15-19.
[13] FOODY G M, MARHUR A. A relative evaluation of multiclass image classification by Support Vector Machines[J]. IEEE transactions on Geoscience and Remote Sensing,2004,42(6):1 335-1 343.
[14] ZHU G B, BULUMBERG D G. Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel[J]. Remote Sensing of Environment,2002,80(2):233-240.
[15] YIN Jian-hua, LIAO Ji-wang, LIU Yun-fang. Noise reduction algorithm based on wavelet transform [J]. Modern Electronics Technique,2007,15(5):144-146.
尹健华,廖继旺,刘云芳.基于小波变换的噪声消除算法研究[J].现代电子技术,2007,15(5):144-146.
基金
国家自然科学青年基金项目资助(41206172);国家海洋公益性行业专项经费项目资助(200705027)