基于HJ-1高光谱影像的黄河口芦苇和碱蓬生物量估测模型研究

任广波, 张杰, 汪伟奇, 耿延杰, 陈妍君, 马毅

海洋学研究 ›› 2014, Vol. 32 ›› Issue (4) : 27-34.

PDF(1638 KB)
PDF(1638 KB)
海洋学研究 ›› 2014, Vol. 32 ›› Issue (4) : 27-34. DOI: 10.3969/j.issn.1001-909X.2014.04.004
研究论文

基于HJ-1高光谱影像的黄河口芦苇和碱蓬生物量估测模型研究

  • 任广波1, 张杰1, 汪伟奇2, 耿延杰2, 陈妍君2, 马毅1
作者信息 +

Reeds and suaeda biomass estimation model based on HJ-1 hyperspectal image in the Yellow River Estuary

  • REN Guang-bo 1, ZHANG Jie 1, WANG Wei-qi 2, GENG Yan-jie 2, CHEN Yan-jun 2, MA Yi 1
Author information +
文章历史 +

摘要

湿地植被的生物量是湿地生态评价、保护和利用的重要基础数据,遥感技术已经成为湿地生物量高效、准确监测的重要手段。基于2013年9月的HJ-1 高光谱遥感影像,应用准同步现场踏勘数据,通过单变量线性回归和多变量线性回归的方法,针对7种常用的窄波段植被指数和2种红边指数对黄河口芦苇和碱蓬生物量(地上干重)的估测能力进行了评价。结果表明:(1)单光谱指数变量情况下,对于芦苇,选择近红外827 nm波段和红635 nm波段简单植被指数(SRI)和线性插值红边指数(REP_ linear interpolation)取得了最佳的单变量回归结果,决定系数分别达到0.42和0.58;对于碱蓬,选择近红外807 nm波段和红692 nm波段的归一化差值植被指数(NDVI)、SRI和优化的土壤校正植被指数(OSAVI)取得了较好的回归结果,决定系数分别达到0.60,0.59和0.47;(2)多光谱指数变量情况下,以在单变量回归分析中取得较好结果的SRI和REP_ linear interpolation指数为变量,芦苇得到了与其生物量之间决定系数为0.71的高相关性;同时,以NDVI、SRI和OSAVI为变量,与碱蓬生物量的决定系数达到了0.66。

Abstract

Wetland vegetation biomass is the basic information of wetland ecological assessment, protection and utilization. Remote sensing has become one of the most efficient technologies of wetland biomass monitoring. Utilizing the HJ-1 hyperspectral remote sensing image that acquired in September 2013 and the coinstantaneous field survey data, the biomass estimation capabilities of 7 kinds of narrow-band vegetation indices and 2 kinds of red edge position indices of reeds and suaeda in the Yellow River Estuary have been studied. The results reveal that (1) In single variable estimation model case, for reeds, the SRI index with 635 nm and 827 nm bands and REP_ linear interpolation index get the best R2 measures, and for suaeda, the NDVI and SRI indices with 692 nm and 807 nm bands and OSAVI index get the best biomass estimation results. (2) In multiple variable case, for reeds and suaeda, the R2 measure get 0.71 and 0.66 respectively.

关键词

生物量遥感 / HJ-1 高光谱 / 植被指数 / 红边指数

Key words

biomass remote sensing / HJ-1 hyperspectral image / vegetation indices / red edge position indices

引用本文

导出引用
任广波, 张杰, 汪伟奇, 耿延杰, 陈妍君, 马毅. 基于HJ-1高光谱影像的黄河口芦苇和碱蓬生物量估测模型研究[J]. 海洋学研究. 2014, 32(4): 27-34 https://doi.org/10.3969/j.issn.1001-909X.2014.04.004
REN Guang-bo , ZHANG Jie , WANG Wei-qi , GENG Yan-jie , CHEN Yan-jun , MA Yi. Reeds and suaeda biomass estimation model based on HJ-1 hyperspectal image in the Yellow River Estuary[J]. Journal of Marine Sciences. 2014, 32(4): 27-34 https://doi.org/10.3969/j.issn.1001-909X.2014.04.004
中图分类号: TP75   

参考文献

[1] RICHARDSON A, WIEGAND C, ARKIN G, et al. Remotely-sensed spectral indicators of sorghum development and their use in growth modeling[J]. Agricultural Meteorology,1982,26(1):11-23.
[2] EVERITT J, ESCOBAR D, RICHARDSON A. Estimating grassland phytomass production with near-infrared and mid-infrared spectral variables[J]. Remote Sensing of Environment,1989,30(3):257-261.
[3] ANDERSON G, HANSON J, HAAS R. Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands[J]. Remote Sensing of Environment,1993,45(2):165-175.
[4] WYLIE B, MEYER D, TIESZEN L, et al. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study[J]. Remote Sensing of Environment,2002,79(2):266-78.
[5] LU Deng-sheng. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing,2006,27(7):1 297-1 328.
[6] CHO M, SKIDMORE A. Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy[J]. International Journal of Remote Sensing,2009,30(2):499-515.
[7] ROUSE J. Monitoring the vernal advancement and retrogradation(greenwave effect) of natural vegetation[R]//NASA/GSFC Type III Final Report. Greenbelt, MD,1974:371-373.
[8] TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment,1979,8(2):127-150.
[9] WANG Hong, LI Xiao-bing, YU Hong-jing. Monitoring growing season of typical steppe in northern China based on NOAA/AVHRR NDVI data[J]. Acta Phytoecologica Sinica,2006,30(3): 356-374.
王宏,李晓兵,余弘婧.基于NOAA/AVHRR NDVI监测中国北方典型草原的生长季及变化[J].植物生态学报,2006,30(3):365-374.
[10] TAO Wei-guo, XU Bin, LIU Li-jun, et al. Yield estimation model for different utilization status grassland based on remote sensing data[J]. Chinese Journal of Ecology,2007,26(3):332-337.
陶伟国,徐斌,刘丽军,等.不同利用状况下草原遥感估产模型[J].生态学杂志,2007,26(3):332-337.
[11] KLEMAS V. Remote sensing of coastal wetland biomass: An overview [J]. Journal of Coastal Research,2013,29(5):1 016-1 028.
[12] HUETE A, JACKSON R. Soil and atmosphere influences on the spectra of partial canopies [J]. Remote Sensing of Environment,1988,25(1):89-105.
[13] KAUFMAN Y J, TANRE D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS [J]. Geoscience and Remote Sensing, IEEE Transactions on,1992,30(2):261-270.
[14] QI Jia-guo, CABOT F, MORAN M, et al. Biophysical parameter estimations using multidirectional spectral measurements[J]. Remote Sensing of Environment,1995,54(1):71-83.
[15] TODD S, HOFFER R, MILCHUNAS D. Biomass estimation on grazed and ungrazed rangelands using spectral indices[J]. International Journal of Remote Sensing,1998,19(3):427-438.
[16] MYNENI R B, HALL F G, SELLERS P J, et al. The interpretation of spectral vegetation indexes[J]. Geoscience and Remote Sensing, IEEE Transactions on,1995,33(2):481-486.
[17] SELLERS P. Canopy reflectance, photosynthesis and transpiration[J]. International Journal of Remote Sensing,1985,6(8):1 335-1 372.
[18] GAO Xiang, HUETE A R, NI Wen-ge, et al. Optical-biophysical relationships of vegetation spectra without background contamination[J]. Remote Sensing of Environment,2000,74(3):609-620.
[19] BLACKBURN G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches[J]. Remote Sensing of Environment,1998,66(3):273-285.
[20] THENKABAIL P S, SMITH R B, DE PAUW E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J]. Remote Sensing of Environment,2000,71(2):158-182.
[21] GILABERT M A, GANDÍA S, MELIA J. Analyses of spectral-biophysical relationships for a corn canopy [J]. Remote Sensing of Environment,1996,55(1):11-20.
[22] MUTANGA O, SKIDMORE A K. Narrow band vegetation indices overcome the saturation problem in biomass estimation[J]. International Journal of Remote Sensing,2004,25(19):3 999-4 014.
[23] ADAM E, MUTANGA O, RUGEGE D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review[J]. Wetlands Ecology and Management,2010,18(3):281-296.
[24] WANG Ye-qiao. Remote sensing of coastal environment[M]. London: CRC Press,2010:261-280.
[25] PENGRA B W, JOHNSTON C A, LOVELAND T R. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor[J]. Remote Sensing of Environment,2007,108(1):74-81.
[26] ROSSO P, USTIN S, HASTINGS A. Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data[J]. International Journal of Remote Sensing,2005,26(23):5 169-5 191.
[27] WANG Ye-qiao. Remote sensing of coastal environment[M]. London: CRC Press,2010:61-78.
[28] USTIN S L, ROBERTS D A, GAMON J A, et al. Using imaging spectroscopy to study ecosystem processes and properties[J]. BioScience,2004,54(6):523-534.
[29] HIRANO A, MADDEN M, WELCH R. Hyperspectral image data for mapping wetland vegetation[J]. Wetlands,2003,23(2):436-448.
[30] COHEN W B. Response of vegetation indices to changes in three measures of leaf water stress [J]. Photogrammetric Engineering & Remote Sensing,1991,57(2):195-202.
[31] GUPTA R, VIJAYAN D, PRASAD T. New hyperspectral vegetation characterization parameters[J]. Advances in Space Research,2001,28(1):201-206.
[32] BROGE N H, LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment,2001,76(2):156-172.
[33] KIM M S, DAUGHTRY C, CHAPPELLE E, et al. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation[C]//Proc. ISPRS'94, Val d'Isere, France,1994:299-306.
[34] DAUGHTRY C, WALTHALL C, KIM M, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74(2):229-239.
[35] DAWSON T, CURRAN P. Technical note A new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing,1998,19(11):2 133-2 139.
[36] CURRAN P J. Imaging spectrometry[J]. Progress in Physical Geography,1994,18(2):247-266.
[37] GOBRON N, PINTY B, VERSTRAETE M M. Theoretical limits to the estimation of the leaf area index on the basis of visible and near-infrared remote sensing data[J]. Geoscience and Remote Sensing, IEEE Transactions on,1997,35(6): 1 438-1 445.

基金

国家自然科学基金青年基金项目资助(41206172);国家海洋局第一海洋研究所基本科研业务费项目资助(GY02-2012G12)

PDF(1638 KB)

Accesses

Citation

Detail

段落导航
相关文章

/