在COMCOT海啸数学模型中加入潮汐边界条件,建立了东中国海天文潮与海啸耦合数学模型。在琉球海沟内侧设计震级为7.6级的海底地震,根据地震板块的错动方向不同,设计正波先行与负波先行两种海啸波,通过调整海啸波发生时间,使海啸波波峰遭遇温州湾天文高潮位。将天文潮与海啸耦合模型计算结果与线性叠加计算结果进行比较,结果表明:无论正波先行还是负波先行,天文潮与海啸耦合计算相比线性叠加的结果,海啸波的到达时间均有所提前;而从海啸波波高来看,线性叠加的计算结果则比耦合计算结果偏高。
Abstract
An astronomical tide and tsunami coupled numerical model of East China Sea was established by adding tidal boundary conditions into COMCOT tsunami model. Two different tsunami waves, positive leading wave and negative leading wave, were designed according to the dislocation direction of earthquake plates during an undersea earthquake with magnitude of 7.6, which occurred in Ryukyu Trench. The tsunami wave crest and astronomic high tide level occurred at the same time through the modification the phase of tsunami wave. Comparison about the summation of astronomic tide level and tsunami wave level was made between the result of coupling model and linear sum. It demonstrates that in both cases mentioned above, the tsunami wave is in advance no matter for the positive leading wave or negative leading wave. And it's higher for the result of linear sum with respect to tsunami wave height.
关键词
COMCOT模型 /
天文潮 /
海啸 /
耦合计算 /
线性叠加
Key words
COMCOT model /
astronomical tide /
tsunami /
coupling model /
linear sum
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WEISZ R, WINTER C. Tsunami, tides and run-up: a numerical study[C]//PAPADONPOULOS G A, SATAKE K. Proceedings of the International Tsunami Symposium,Chania, Greece.2005,322:27-29.
[2] KOWALIK Z, PROSHUTINSKY T, PROSHUTINSKY A. Tide-tsunami interactions[J]. Science of Tsunami Hazards,2006,24(4):242-256.
[3] DAO M H, TKALICH P. Tsunami propagation modelling? a sensitivity study[J]. Natural Hazards and Earth System Science,2007,7(6):741-754.
[4] YAO Yuan, CAI Shu-qun, WANG Sheng-an. Preliminary numerical simulation of a tsunami in Taiwan Strait[J]. Journal of Tropical Oceanography,2009,28(2):1-6.
姚远,蔡树群,王盛安.台湾海峡一次海啸的初步数值模拟[J].热带海洋学报,2009,28(2):1-6.
[5] PAN Wen-liang,WANG Sheng-an. Introduction and application of COMCOT model[J].Marine Forecasts, 2009,26(3):45-52.
潘文亮,王盛安.COMCOT数值模式的介绍和应用[J].海洋预报,2009,26(3):45-52.
[6] LIUP L F, CHO Y S, BRIGGS M J, et al. Runup of solitary waves on a circular Island[J]. Journal of Fluid Mechanics,1995,302(9):259-285.
[7] WANG X, LIU P L F. A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami[J]. Computer Modeling in Engineering and Science,2005,10(2):171-183.
[8] WANG X, LIU P L F. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami[J]. Journal of Hydraulic Research,2006,44(2):147-154.
[9] LI Lin-yan, MAO Xian-zhong.Numerical study for tide-tsunami coupling model in Shenzhen waters[J]. Acta Oceanologica Sinica,2012,34(3):11-18.
李林燕,毛献忠.深圳海域潮汐海啸波耦合数值研究[J].海洋学报,2012,34(3):11-18.
[10] YING Chao,YU Pu-bing, MU Jin-bin, et al.Study on inversion forecasting model for East China Sea——A case study of Japan "3·11" tsunami[J]. Marine Forecasts,2015,32(3):36-42.
应超,于普兵,穆锦斌,等.东海海啸反问题预报模式研究——以日本“3·11”海啸为例[J].海洋预报,2015,32(3):36-42.
基金
浙江省自然科学基金项目资助(LY13E090001);浙江省科技计划项目资助(2015F50064,2015F50011)