基于卫星测高数据的海洋中尺度涡流动态特征检测

赵文涛, 俞建成, 张艾群, 李岩

海洋学研究 ›› 2016, Vol. 34 ›› Issue (3) : 62-68.

PDF(1564 KB)
PDF(1564 KB)
海洋学研究 ›› 2016, Vol. 34 ›› Issue (3) : 62-68. DOI: 10.3969/j.issn.1001-909X.2016.03.010
研究报道

基于卫星测高数据的海洋中尺度涡流动态特征检测

  • 赵文涛1,2, 俞建成*1, 张艾群1, 李岩1
作者信息 +

Dynamic feature detection of mesoscale eddies based on SLA data

  • ZHAO Wen-tao1,2, YU Jian-cheng*1, ZHANG Ai-qun1, LI Yan1
Author information +
文章历史 +

摘要

为了最终实现对海洋中尺度涡流(简称中尺度涡)的自动采样,首先应该发展中尺度涡动态特征识别技术。本文基于SLA(Sea Level Anomaly)数据,实现了对中尺度涡动态特征的检测算法。主要内容是制定了一个判别相邻两组SLA数据中的涡流,是否为同一涡流子在不同时刻的状态的标准,即判别下一时刻SLA数据中是否存在涡流是由上一时刻确定的被检测涡流演化而来的。通过确定这种进化关系,可以得到被检测涡流的一系列动态状态信息,例如:面积变化速率、中心移动情况以及其他情况。本算法的计算量不大,从而可以应用到实时涡流跟踪的环境中。值得注意的是,本文中的算法不仅仅局限于应用SLA数据,SSH(Sea Surface Height)等大部分反映海洋高度的数据也可以使用。

Abstract

To automatically sample mesoscale eddies by AUVs, the method to automatically recognize the dynamic features of eddies must be developed. In this study, a method for dynamic feature detection of mesoscale eddies was created based on SLA (Sea Level Anomaly) data. The main innovation is that a criterion to decide the succession relations of eddies was developed. With the succession relations of eddies being confirmed, we can calculate the area changing rate of eddy region, velocity of eddy centroid movement and some other dynamic features. Since the calculation cost of this algorithm is not enormous, it can be used in real time eddy tracking context, such as tracking eddies with AUVs. It is worth noting that SSH(Sea Surface Height) data can also be used in this algorithm. And SLA or SSH data can be acquired from the ocean numerical simulation model, satellite remote sensing or other methods. As long as SLA or SSH data are provided, our algorithm can be easily utilized for dynamic feature detection of mesoscale eddies.

关键词

中尺度涡 / 动态特征 / 演化关系 / 自动检测

Key words

mesoscale eddy / dynamic feature / succession relationship / automatically detection

引用本文

导出引用
赵文涛, 俞建成, 张艾群, 李岩. 基于卫星测高数据的海洋中尺度涡流动态特征检测[J]. 海洋学研究. 2016, 34(3): 62-68 https://doi.org/10.3969/j.issn.1001-909X.2016.03.010
ZHAO Wen-tao, YU Jian-cheng, ZHANG Ai-qun, LI Yan. Dynamic feature detection of mesoscale eddies based on SLA data[J]. Journal of Marine Sciences. 2016, 34(3): 62-68 https://doi.org/10.3969/j.issn.1001-909X.2016.03.010
中图分类号: P731.2   

参考文献

[1] ZHANG Zheng-guang, WANG Wei, QIU Bo. Oceanic mass transport by mesoscale eddies [J]. Science,2014,345(6194):322-324.
[2] MARTIN J P, LEE C M, ERIKSEN C C, et al. Glider observations of kinematics in a Gulf of Alaska eddy[J]. J Geophys Res-Oceans,2009,114(C12):43-47.
[3] PENVEN P, ECHEVIN V, PASAPERA J, et al. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach[J]. Journal of Geophysical Research Atmospheres,2005,110(C10):901-902.
[4] CHAIGNEAU A, GIZOLME A, GRADOS C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography,2008,79(2-4):106-119.
[5] ISERN-FONTANET J, GARCIA-LADONA E, FONT J. Identification of marine eddies from altimetric maps[J]. J Atmos Ocean Tech,2003,20(5):772-778.
[6] ISERN-FONTANET J, GARC A-LADONA E, FONT J. Vortices of the Mediterranean Sea: An altimetric perspective[J]. Journal of Physical Oceanography,2006,36(1):87-103.
[7] CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters,2007,34(15):87-101.
[8] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography,2011,91(2):167-216.
[9] ROBERTS J J, BEST B D, DUNN D C, et al. Marine geospatial ecology tools: An integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++ [J]. Environmental Modelling & Software,2010,25(10):1 197-1 207.
[10] BERON-VERA F J, OLASCOAGA M J, GONI G J. Oceanic mesoscale eddies as revealed by Lagrangian coherent structures[J]. Geophysical Research Letters,2008,35(12):86-109.
[11] ISERN-FONTANET J, FONT J, GARCIA-LADONA E, et al. Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter [J]. Deep-Sea Res Pt Ii,2004,51(25-26):3 009-3 028.
[12] SOUZA J M A C, DE BOYER MONT GUT C, LE TRAON P Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean [J]. Ocean Science,2011,7(3):317-334.
[13] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics,2006,285:69-94.
[14] PASQUERO C, PROVENZALE A, BABIANO A. Parameterization of dispersion in two-dimensional turbulence[J]. J Fluid Mech,2001,439(5):279-303.
[15] HSU C-W, CHANG C-C, LIN C-J. A practical guide to support vector classification [J]. 臺北市:國立臺灣大學資訊工程學系,2003,67(5):1-12.
[16] KASS M, WITKIN A, TERZOPOULOS D. Snakes: Active contour models[J]. International Journal of Computer Vision,1988,1(4):321-331.
[17] TERZOPOULOS D, SZELISKI R. Active vision[M]. Cambridge:MIT Press Cambridge,1993:3-20.

基金

国家自然科学基金项目资助(61233013)

PDF(1564 KB)

Accesses

Citation

Detail

段落导航
相关文章

/