印度洋卡尔斯伯格脊6°48′N附近热液羽状流水化学参数异常和颗粒物成分特征

蒋紫靖, 韩喜球, 王叶剑, 邱中炎

海洋学研究 ›› 2017, Vol. 35 ›› Issue (4) : 34-43.

PDF(3544 KB)
PDF(3544 KB)
海洋学研究 ›› 2017, Vol. 35 ›› Issue (4) : 34-43. DOI: 10.3969/j.issn.1001-909X.2017.04.004
研究论文

印度洋卡尔斯伯格脊6°48′N附近热液羽状流水化学参数异常和颗粒物成分特征

  • 蒋紫靖1,2, 韩喜球1,2, 王叶剑1,2, 邱中炎1,2
作者信息 +

Characteristics of water chemistry and constituents of particles in the hydrothermal plume near 6°48′N, Carlsberg Ridge, Northwest Indian Ocean

  • JIANG Zi-jing1,2, HAN Xi-qiu1,2, WANG Ye-jian1,2, QIU Zhong-yan1,2
Author information +
文章历史 +

摘要

2015年中国大洋33航次在西北印度洋卡尔斯伯格脊6°48′N附近进行了热液异常探测,成功发现了大糦热液区。本文对该热液区附近采集的CTD水样开展了水化学与颗粒物分析。结果表明,在3 150~3 400 m水深范围内水体存在Cl、Br、Mg负异常以及DFe和DMn正异常。其中Cl、Br、Mg的浓度较研究区海水背景值分别亏损2.87%~5.27%、3.21%~4.53%和2.52%~3.82%,Cl和Br的亏损指示海底释放的热液流体曾经发生了相分离。根据Mg的亏损情况,可以估算热液羽状流中热液流体的贡献约3.90%。DFe和DMn的浓度峰值分别为127 nmol/L和29.0 nmol/L,均出现在水深3 150 m层位。颗粒物的电镜观察和能谱分析结果显示,在2 900~3 400 m深度范围内存在热液成因的富铁氧化物(FeO占49.1%~95.2%),与海水样品中发现的高浓度DFe和DMn相印证。根据实测底层流流速与Fe(Ⅱ)扩散半径对研究区的Fe(Ⅱ)氧化半衰期进行了估算,得到大糦热液区Fe(Ⅱ)氧化半衰期为0.56~2.22 h。

Abstract

In 2015, a hydrothermal field named Daxi was discovered during the Chinese DY33 cruise at 6°48′N, Carlsberg Ridge, Northwest Indian Ocean. The chemistry of water samples and particles of a CTD station near Daxi Hydrothermal Field was studied. In the water depth of 3 150~3 400 m, the water chemistry shows slight depletion of Cl, Br, Mg and intense enrichment of DFe and DMn. The concentrations of Cl, Br, Mg deplete 2.87%~5.27%, 3.21%~4.53% and 2.52%~3.82%, respectively, when comparing to background seawater. It is suggested that the hydrothermal fluid has been subjected to phase separation, resulting in the depletion of Cl and Br. The depletion of Mg suggests that the hydrothermal plume has been well mixed with the ambient seawater and the contribution of hydrothermal fluid is account for about 3.90%. The concentrations of DFe and DMn reach to 127 nmol/L and 29.0 nmol/L, respectively, for the sample collected at 3 150 m water depth. The particles have been investigated under scanning electron microscope and analyzed by energy dispersive X-Ray spectrometer. The results show that among the particles in the water depth of 2 900~3 400 m, there are more iron oxides or hydroxides (49.1%~95.2% FeO) present, and this discovery is consistent with the enrichment of DFe and DMn in the water samples. According to the current speed and the diffuse radius of Fe(Ⅱ), the calculated value of Fe(Ⅱ) oxidation half-live in Daxi hydrothermal field is 0.56~2.22 h.

关键词

卡尔斯伯格脊 / 大糦热液区 / 热液羽状流 / 海水化学异常 / 颗粒物成分

Key words

Carlsberg Ridge / Daxi Hydrothermal Field / hydrothermal plumes / chemical anomalies of seawater / constituents of particles

引用本文

导出引用
蒋紫靖, 韩喜球, 王叶剑, 邱中炎. 印度洋卡尔斯伯格脊6°48′N附近热液羽状流水化学参数异常和颗粒物成分特征[J]. 海洋学研究. 2017, 35(4): 34-43 https://doi.org/10.3969/j.issn.1001-909X.2017.04.004
JIANG Zi-jing, HAN Xi-qiu, WANG Ye-jian, QIU Zhong-yan. Characteristics of water chemistry and constituents of particles in the hydrothermal plume near 6°48′N, Carlsberg Ridge, Northwest Indian Ocean[J]. Journal of Marine Sciences. 2017, 35(4): 34-43 https://doi.org/10.3969/j.issn.1001-909X.2017.04.004
中图分类号: P734.2   

参考文献

[1] MORTON B R, TAYLOR G, TURNER J S. Turbulent gravitational convection from maintained and instantaneous sources[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences,1956,234(1 196):1-23.
[2] LUPTON J E, CRAIG H. A major Helium-3 source at 15°S on the East Pacific Rise[J]. Science,1981,214(4 516):13-18.
[3] REID J L. Evidence of an effect of heat flux from the East Pacific Rise upon the characteristics of the mid-depth waters[J]. Geophysical Research Letters,1982,9(4):381-384.
[4] BAKER E T, MASSOTH G J. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean[J]. Earth and Planetary Science Letters,1987,85(1):59-73.
[5] GAMO T, OKAMURA K, HATANAKA H, et al. Hydrothermal plumes in the gulf of Aden, as characterized by light transmission, Mn, Fe, CH4, and δ13C-CH4, anomalies[J]. Deep Sea Research Part II Topical Studies in Oceanography,2015,121:62-70.
[6] ŞENGÖR A M C. Tethys: Marine geosciences[M]. Netherlands: Springer,2014.
[7] CORLISS J B, DYMOND J, GORDON L I. Submarine thermal springs on the Galapagos Rift[J]. Science,1979,203(4 385):1 073-1 083.
[8] LI Jun, SUN Zhi-lei, HUANG Wei, et al. Modern seafloor hydrothermal process and mineralization[J]. Earth Science:Journal of China University of Geosciences,2014,39(3):312-324.
李军,孙治雷,黄威,等.现代海底热液过程及成矿[J].地球科学:中国地质大学学报,2014,39(3):312-324.
[9] NAKAMURA K, TAKAI K. Indian Ocean hydrothermal systems: Seafloor hydrothermal activities, physical and chemical characteristics of hydrothermal fluids, and vent-associated biological communities[M]// Subseafloor biosphere linked to hydrothermal systems. Japan: Springer,2015:147-161.
[10] BEAULIEU S E, BAKER E T, GERMAN C R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges[J]. Deep Sea Research Part II Topical Studies in Oceanography,2015,121:202-212.
[11] RAMANA M V, RAMPRASAD T, KAMESH RAJU K A, et al. Geophysical studies over a segment of the Carlsberg Ridge, Indian Ocean[J]. Marine Geology,2013,115(1-2):21-28.
[12] RAY D, MIRZA I H, PRAKASH L S, et al. Water-column geochemical anomalies associated with the remnants of a mega plume: A case study after CR-2003 hydrothermal event in Carlsberg Ridge, NW Indian Ocean[J]. Current Science,2008,95(3):355-360.
[13] MURTON B J, BAKER E T, SANDS C M, et al. Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean[J]. Geophysical Research Letters,2006,33(10):245-268.
[14] RAY D, KAMESH RAJU K A, BAKER E T, et al. Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean[J]. Geochemistry, Geophysics, Geosystems,2012,3017(13):605-606.
[15] TAO Chun-hui, WU Guang-hai, DENG Xian-ming, et al. New discovery of seafloor hydrothermal activity on the Indian Ocean Carlsberg Ridge and Southern North Atlantic Ridge—progress during the 26th Chinese COMRA cruise[J]. Acta Oceanologica Sinica,2013,32(8):85-88.
[16] HAN Xi-qiu, WANG Ye-jian, LI Xiao-hu, et al. First ultramafic-hosted hydrothermal sulfide deposit discovered on the Carlsberg Ridge, Northwest Indian Ocean[R]. Hangzhou,2015.
[17] WANG Ye-jian, HAN Xi-qiu, PETERSEN S, et al. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews,2016,84:1-19.
[18] GALLANT R M, VON DAMM K L. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°-25°S, Central Indian Ridge[J]. Geochemistry, Geophysics, Geosystems,2006,7(6):1-24.
[19] WANG Hu, YANG Qun-hui, JI Fu-wu, et al. The geochemical characteristics and Fe(II) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge[J]. Marine Chemistry,2012,134-135(8):29-35.
[20] FIELD M P, SHERRELL R. Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise: Slow Fe(II) oxidation kinetics in Pacific plumes[J]. Geochimica et Cosmochimica Acta,2000,64(4):619-628.
[21] GUERRERO J, RANGIN C, CARRANZA A, et al. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise[J]. Nature,1979,277(5 697):523-528.
[22] HAYMON R M, KASTNER M. Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis[J]. Earth and Planetary Science Letters,1981,53(3):363-381.
[23] BAKER E T, LAVELLE J W, MASSOTH G J. Hydrothermal particle plumes over the southern Juan de Fuca Ridge[J]. Nature,1985,316(6 026):342-344.
[24] SUN Xiao-xia, YANG ZUO-sheng, FAN De-jiang, et al. Suspended zinc sulfide particles in the Southwest Indian Ridge area and their relationship with hydrothermal activity[J]. Chinese Science Bulletin,2014,59(9):825-832.
孙晓霞,杨作升,范德江,等.西南印度洋中脊区悬浮硫化锌颗粒及与热液活动的关系[J].科学通报,2014,59(9):825-832.
[25] KOSCHINSKY A, SEIFERT R, HALBACH P, et al. Geochemistry of diffuse low-temperature hydrothermal fluids in the North Fiji basin[J]. Geochimica et Cosmochimica Acta,2002,66(8):1 409-1 427.
[26] BUTTERFIELD D A, JONASSON I R, MASSOTH G J, et al. Seafloor eruptions and evolution of hydrothermal fluid chemistry[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,1997,355(1 723):369-386.
[27] VON DAMM K L, BUTTERMORE L G, OOSTING S E. Direct observation of the evolution of a seafloor ‘black smoker’ from vapor to brine[J]. Earth and Planetary Science Letters,1997,149(1-4):101-111.
[28] WANG Xiao-yuan, ZENG Zhi-gang, LIU Chang-hua, et al. Geochemical anomalies of hydrothermal plume at EPR 13°N[J]. Science in China Series D: Earth Sciences,2007,50(9):1 433-1 440.
[29] VON DAMN K L. Seafloor hydrothermal activity: Black smoker chemistry and chimneys[J]. Annual Review of Earth and Planetary Sciences,1990,18(1):173-204.
[30] GERMAN C R, VON DAMM K L. Hydrothermal processes[M]//HEINRICH D H, KARL K T. Treatise on geochemistry. Pergamon: Oxford,2004:191-233.
[31] BREUER C, PICHLER T. Arsenic in marine hydrothermal fluids[J]. Chemical Geology,2013,348(4):2-14.
[32] VONDAMM K L, EDMOND J M, GRANT B, et al. Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise[J]. Geochimica et Cosmochimica Acta,1985,49(11):2 197-2 220.
[33] GERMAN C R, LEGENDRE L L, SANDER S G, et al. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments[J]. Earth and Planetary Science Letters,2015,419:143-153.
[34] SANDS C M, CONNELLY D P, STATHAM P J, et al. Size fractionation of trace metals in the Edmond hydrothermal plume, Central Indian Ocean[J]. Earth and Planetary Science Letters,2012,319-320:15-22.
[35] NELSEN T A, KLINKHAMMER G P, TREFRY J H, et al. Real-time observation of dispersed hydrothermal plumes using nephelometry: Examples from the Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters,1987,81(2-3):245-252.
[36] STATHAM P, GERMAN C, CONNELLY D. Iron(II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean[J]. Earth and Planetary Science Letters,2005,236(3-4):588-596.
[37] RUDNICKI M D, ELDERFIELD H. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26°N, Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta,1993,57(13):2 939-2 957.
[38] SANDS C M. Hydrothermal plumes and processes in the Indian Ocean[D]. Southampton: University of Southampton,2006.

基金

中国大洋协会国际海域资源调查与开发“十二五”项目资助(DY125-12-R-03);国家自然科学基金项目资助(91228101)

PDF(3544 KB)

Accesses

Citation

Detail

段落导航
相关文章

/