Effects of different hypersalinity models on the photo-physiological performances and related gene expression in Ulva prolifera
ZHONG Jia-li1,2, LI Ya-he1,2, ZHENG Ming-shan1,2, ZANG Ru1,2, XU Nian-jun*1,2
Author information+
1. Key Laboratory of Applied Marine Biotechnology of the Ministry of Education, Ningbo 315211, China; 2. Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University,Ningbo 315211,China
To evaluate the effects of hypersalinity and its fluctuation on the photo-physiological and the performances of marine “green tide” algae on salt tolerance, Ulva prolifera was selected as the experimental material. We set up three salinity conditions: salinity 25 as control (CK); treatment 1 (T1), salinity 30 for 3 d, then increased to salinity 35; treatment 2 (T2), salinity 35 for 6 d. The relative growth rate, the content of photosynthetic pigments, the photosynthetic and dark respiration rates and the gene expression levels of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) and calmodulin (CaM) were measured. The results showed that compared with control groups, hypersalinity significantly inhibited the relative growth rates and photo-physiological performances. Both T1, T2 treatments inhibited the relative growth rates and net photosynthesis rates of U. prolifera, and the inhibition effects of T2 was much stronger than that of the former one. The effect of hypersalinity stress on the dark respiration rate was not significant, which also had no significant effect on the content of photosynthetic pigments and their ratio of photosynthetic pigments. However, the dark respiration rate was significantly increased and photosynthetic pigments was significantly decreased along with the algae grow up. And the gene expression levels of rbcL and cam were also affected by hypersalinity. U. prolifera cultured in T1 treatment showed better resistance to hypersalinity than T2 treatment after 3 d and 6 d. It showed that U. prolifera could adapt to hypersalinity when the salinity was increased gradually. These results could explain the adaptation ability on hypersalinity stress of U. prolifera at the period of green tide formed and low tide.
ZHONG Jia-li, LI Ya-he, ZHENG Ming-shan, ZANG Ru, XU Nian-jun.
Effects of different hypersalinity models on the photo-physiological performances and related gene expression in Ulva prolifera[J]. Journal of Marine Sciences. 2019, 37(2): 72-80 https://doi.org/10.3969/j.issn.1001-909X.2019.02.008
中图分类号:
Q945.78
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YE Nai-hao, ZHANG Xiao-wen, MAO Yu-ze, et al. “Green tides” are overwhelming the coastal of our blue planet: taking the world's largest example[J]. Ecology Research, 2011, 26(3): 477-484. [2] LIN A-peng, SHEN Song-dong, WANG Jian-wei, et al. Reproduction diversity of Enteromorpha prolifera[J]. Journal of Integrative Plant Biology, 2008, 50(5): 622-629. [3] WANG Xiao-kun, MA Jia-hai, YE Dao-cai, et al. Preliminary study on the life history of Enteromorpha prolifera[J]. Marine Science Bulletin, 2007, 26(5):112-116. 王晓坤, 马家海, 叶道才, 等. 浒苔 (Enteromorpha prolifera) 生活史的初步研究[J]. 海洋通报, 2007, 26(5): 112-116. [4] WU Hong-xi, XU Ai-guang, WU Mei-ning. Preliminary study on experimental ecology of Enteromorpha prolifera (miill.)[J]. Journal of Zhejiang Ocean University: Natural Science, 2000, 19(3):230-234. 吴洪喜, 徐爱光, 吴美宁. 浒苔实验生态的初步研究[J].浙江海洋学院学报: 自然科学版, 2000, 19(3): 230-234. [5] WANG Zong-ling, XIAO Jie, FAN Shi-liang, et al. Who made the world's largest green tide in China? An integrated study on the initiation and early development of the green tide in Yellow Sea[J]. Limnology and Oceanography, 2015, 60(4): 1 105-1 117. [6] CHOI T S, KANG E J, KIM J H, et al. Effect of salinity on growth and nutrient uptake of Ulva pertusa(Chlorophyta) from an eelgrass bed[J]. Algae, 2010, 25(1): 17-26. [7] GAO Bing-bing, ZHENG Chun-fang, XU Jun-tian, et al. Physiological responses of Enteromorpha linza and Enteromorpha prolifera to seawater salinity stress[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1 913-1 920. 高兵兵, 郑春芳, 徐军田, 等. 缘管浒苔和浒苔对海水盐度胁迫的生理响应[J]. 应用生态学报, 2012, 23(7): 1 913-1 920. [8] WAND Dong, LI Ya-he, XU Nian-jun, et al. Combined effects of 24-epibrassinolide and salinity on the growth and physiological performance of Ulva prolifera[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 946-952. 王东,李亚鹤,徐年军,等. 24-表油菜素内酯和盐度对浒苔生长和生理活性的影响[J].应用生态学报, 2016, 27(3): 946-952. [9] CONG Shan-shan. A study on the effects of environmental factors on growth, living conditions and uptake rates of Enteromorpha prolifera[D]. Qingdao: Ocean University of China, 2011. 丛姗姗. 环境因子对浒苔(Enteromorpha prolifera)生长、生存状态和营养吸收影响的实验研究[D]. 青岛:中国海洋大学, 2011. [10] GAO Guang, ZHONG Zhi-hai, ZHOU Xiao-hong, et al. Changes in morphological plasticity of Ulva prolifera under different environmental conditions: A laboratory experiment[J]. Harmful Algae, 2016, 59: 51-58. [11] LIU Yu-sha, WAND Dong, XU Xiao-ting, et al. Combined effects of salinity and temperature on the growth and photophysiological performances in Uval prolifera[J]. Acta Hydrobiologic Sinica, 2016, 40(6): 1 227-1 233. 刘榆莎, 王东, 徐晓婷,等.温度和盐度对浒苔生长和光合生理特性的影响[J].应用生态学报, 2016, 40(6): 1 227-1 233. [12] YAND Liu, ZHUO Pin-li, ZHONG Jia-li, et al. Effect of salicylic acid on the growth and physiological performance of Ulva prolifera[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1 962-1 968. 杨柳, 卓品利, 钟佳丽, 等.水杨酸对浒苔生长和生理特性的影响[J].应用生态学报, 2017, 28(6): 1 962-1 968. [13] TAYLOR R, FLETCHER R L, RAVEN J A. Preliminary studies on the growth of selected “Green Tide” algae in laboratory culture: Effects of irradiance, temperature, salinity and nutrients on growth rate[J]. Botanica Marina, 2001, 44(4): 327-336. [14] XIA Jian-rong, LI Yong-jun, ZOU Ding-hui. Effects of salinity stress on PSⅡin Ulva lactuca as probed by chlorophyll fluorescence measurements[J]. Aquatic Botany, 2004, 80(2): 129-137. [15] FONG P, BOYER K E, DESMOND J S. Salinity stress, nitrogen competition, and facilitation: what controls seasonal succession of two opportunistic green macroalgae[J]. Journal of Experimental Marine Biology and Ecology, 1996, 206(1-2): 203-221. [16] DAVISON I R, PERSON G A. Stress tolerance in intertidal seaweeds[J]. Journal of Phycologia, 1996, 32(2): 197-211. [17] GAO Shan, ZHENG Zhen-bing, GU Wen-hui, et al. Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera(Chlorophyta)[J]. Physiologia Plantarum, 2014, 152(2): 380-388. [18] XU Jian-fang, ZHANG Xiao-wen, YE Nai-hao, et al. Activities of principal photosynthetic enzymes in green macroalga Ulva linza: functional implication of C4 pathway in CO2 assimilation[J]. Science China Life Sciences, 2013, 56(6): 571-580. 许建方, 张晓雯, 叶乃好, 等. 缘管浒苔C4途径主要光合作用酶活性[J]. 中国科学:生命科学, 2013(7):596-605. [19] SUN Da-ye, YU Min-juan. The effects of the calmodulin inhibitors on the phytochrome controlled rotation of Mougeotia chloroplast[J]. Journal of Integrative Plant Biology, 1986, 28(6): 615-621. 孙大业, 俞敏娟. 钙调节蛋白抑制剂对转板藻光敏色素控制的叶绿体向光运动的影响[J].植物学报, 1986, 28(6): 615-621. [20] WANG Meng-qiang. Analysis of the ESTs and anti-desiccation genes of Porphyra yezoensis ueda[D]. Qingdao: Ocean University of China, 2007. 王孟强. 条斑紫菜功能基因组特性与抗逆相关基因表达分析[D].青岛: 中国海洋大学, 2007. [21] DONG Li-xian, SU Ji-lan. Salinity distribution and mixing in Xiangshan Bay[J]. Oceanologia et Limnologia Sinica, 2000, 31(2):151-158. 董礼先, 苏纪兰. 象山港盐度分布和水体混合I.盐度分布和环流结构[J]. 海洋与湖沼, 2000, 31(2):151-158. [22] EDWARDS D M, REED R H, STEWART W D. Osmoacclimation in Enteromorpha intestinali: long-term effects of osmotic stress on organic solute accumulation[J]. Marine Biology, 1988, 98(4): 467-476. [23] GUILLARD R R L, RYTHER J H. Studies of marine planktonic diatoms:I.Cyclotella nana Hustedt, and Detonula confervacea(Cleve) Gran[J]. Canadian Journal of Microbiology, 1962, 8(2): 229-239. [24] WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3): 307-313. [25] FLEISHER D H, TIMLIN D J, REDDY V R. Temperature influence on potato leaf and branch distribution and on canopy photosynthetic rate[J]. Agronomy Journal, 2006, 98(6):1 442-1 452. [26] ZHU Zhao-bo, SUN Xue, XU Nian-jun, et al. Effects of salicylic acid on the resistance of Gracilaria /Gracilariopsis lemaneiformis to high temperature[J]. Journal of Fisheries of China, 2012, 36(8): 1 304-1 312. 朱招波,孙雪,徐年军,等. 水杨酸对龙须菜抗高温生理的影响[J]. 水产学报,2012,36(8): 1 304-1 312. [27] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 2001, 25(4): 402-408. [28] WANG Jian-wei, YAN Bin-lun, LIN A-peng, et al. Ecological factor research on the growth and induction of spores release in Enteromorpha prolifera[J]. Marine Science Bulletin, 2007, 26(2): 60-65. 王建伟, 阎斌伦, 林阿朋, 等. 浒苔(Enteromorpha prolifera)生长及孢子释放的生态因子研究[J]. 海洋通报, 2007, 26(2): 60-65. [29] DING Lan-ping, SUN Guo-dong, HUANG Bing-xin, et al. Effects of temperature and salinity on growth and photosynthetic pigments of marine and alga Acanthophora spicifera[J]. Oceanologia et Limnologia Sinica, 2013, 44(4):913-918. 丁兰平, 孙国栋, 黄冰心, 等. 温度和盐度对刺枝鱼栖苔(Acanthophora spicifera) (红藻门, 松节藻科)生长及其集中光合色素的影响[J]. 海洋与湖沼, 2013,44(4): 913-918. [30] WU Hai-yi, DING Gang, XU Zhi-guang. Effects of salt stress on growth and photosynthesis of Pyropia haitanensis(Rhodophyta) culture under different nitrogen conditions[J]. Oceanologia et Limnologia Sinica, 2015, 46(5): 1 210-1 217. 吴海一, 丁刚, 徐智广. 不同氮浓度下盐胁迫对坛子菜(Pyropia haitanensis)生长和光合作用的影响[J]. 海洋与湖沼, 2015, 46(5): 1 210-1 217. [31] JIMNEZ C, NIELL F X. Influence of high salinity and nitrogen limitation on package effect and C/N ratio in Dunaliella viridis[J]. Hydrobiologia, 2003, 492(1-3): 201-206. [32] JIANG Cai-zhong, RODERMEL S R. Regulation of photosynthesis during leaf development in rbcS antisense DNA mutants of tobacco[J]. Plant Physiology, 1995, 107(1): 215-224. [33] LIN Sen-jie, CARPERNTER E J. Rubisco of Dunaliella tertiolecta is redistributed between the epyrenoid and the stroma as a light/shade response[J]. Marine Biology, 1997, 127(3): 521-529. [34] QUAN Guang-hua, LIU Kai. The research progress of Rubisco[J]. Journal of Anhui Agricultural Sciences, 2011, 39(21): 12 652,12 746. 全光华, 刘锴. Rubisco的研究进展[J]. 安徽农业科学, 2011, 39(21):12 652, 12 746. [35] LIU Hui-fang, HE Xiao-ling, XIAO Chun-yan, et al. Effects of exogenous GSH on photosynthetic characteristics and expression of key enzyme genes of CO2 assimilation in leaves of tomato seedlings under NaCl stress[J]. Chinese Journal of Applied Ecology, 2014, 25(9):2 637-2 644. 刘会芳, 何晓玲, 肖春燕, 等. 外源GSH 对NaCl 胁迫下番茄幼苗光合特性及碳同化关键酶基因表达的影响[J].应用生态学报, 2014, 25(9):2 637-2 644. [36] ZHANG Jun-cheng, MENG Yun-huan, SONG Yu-hong, et al. Research developments of Ca2+-CaM signal system and its regulation in plant[J]. Journal of Chongqing Normal University: Natural Science Edition, 2005, 22(4):49-52. 张君诚, 孟玉环, 宋育红, 等. 植物Ca2+-CaM信号系统及其调控研究进展[J]. 重庆师范大学学报:自然科学版, 2005, 22(4):49-52. [37] DEFALCO T A, BENDER K W, SNEDDEN W A. Breaking the code: Ca2+ sensors in plant signaling[J]. Biochemical Journal, 2009, 425(1):27-40. [38] KIM M C, CHUNG W S, YUN D J, et al. Calcium and calmodulin-mediated regulation of gene expression in plants[J]. Molecular Plant, 2009, 2(1):13-21. [39] FANG Rong-jun, HU Dong-qing, DU Wei, et al. Cloning, sequence analysis and induced expression of a calmodulin gene MCaM-3 from mulberry[J]. Science of Sericulture, 2009, 35(4): 711-717. 方荣俊, 扈冬青, 杜伟, 等. 桑树钙调素蛋白基因MCaM-3的克隆及序列分析与诱导表达[J].蚕业科学, 2009, 35(4): 711-717. [40] WANG Zhao-hui, SUN Da-ye. Advances of the studies on plant calmodulin[J]. Chinese Bullettin of Botany, 1997, 14(1):1-7. 王朝晖, 孙大业. 植物钙调素研究进展[J]. 植物学通报, 1997, 14(1):1-7.