将Argo浮标资料与卫星遥感再分析数据相结合,调用基于抛物方程算法的RAM(Range-dependent Acoustic Model)模型,研究了2012年第14号台风“天秤”对不完整深海声道(3 000 m)和完整深海声道(5 500 m)两种水深条件下声传播特性的影响。结果显示:台风对海水的影响局限于表层水体,具体为混合层加厚,混合层内温度梯度接近于零,声速在混合层内正梯度分布;混合层下方一定深度的水体增温,相应的声速也增大。声源在混合层内时,主要对海表层的声传播产生影响,两种水深条件下均出现表面波导声传播模式以及泄漏模式。声源在混合层以下时,不完整深海声道条件下台风使得会聚区向着声源方向靠近;完整深海声道条件下台风对会聚区的位置影响不明显,但声波的翻转深度增加近500 m。
Abstract
Using RAM (Range dependent Acoustic Model) model which was based on parabolic equation algorithm and combined Argo floats with multi-satellite data, effects of typhoon on acoustic propagation characteristics for incomplete deep-sound channel(3 000 m) and complete deep-sound channel(5 500 m) were researched. Results show that the influence of typhoon on sea water is confined in surface layer, which is characterized by the thickening of the mixed-layer, zero temperature gradient and positive sound speed gradient in the mixed-layer. At a certain depth below the mixed-layer, the water temperature increases, and the corresponding sound speed increases. When the sound source is placed in the mixed-layer, sound propagation in sea surface layer will be affected, the surface waveguide sound propagation and leakage modes appear in both incomplete and complete deep-sound channels. When the source is under the mixed layer, typhoon makes the convergence zone close to the sound source under the condition of incomplete deep-sound channel.Under the condition of complete deep-sound channel, the disturbance of typhoon on the location of convergence zone is not obvious, but the flip depth of the sound wave increases nearly 500 m.
关键词
台风 /
西太平洋海域 /
声传播 /
抛物方程
Key words
typhoon /
the western Pacific Ocean /
sound propagation /
parabolic equation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FU Dong-yang. The study of water color and temperature environments in the Northwest Pacific Ocean by typhoon based on satellite remote sensing data[D]. Guangzhou: Graduate school of Chinese Academy of Sciences, 2009.
付东洋. 基于卫星遥感研究台风对西北太平洋海域水色水温环境的影响[D]. 广州:中国科学院研究生院, 2009.
[2] LI Xue, FU Dong-yang, ZHANG Ying, et al. The impacts of super typhoon Rammasun on the environment of the northwestern South China Sea[J]. Journal of Tropical Oceanography, 2016,35(6):19-28.
李薛,付东洋,张莹,等. 超强台风“威马逊”对南海西北海域海洋环境的影响[J]. 热带海洋学报,2016,35(6):19-28.
[3] FU Dong-yang, DING You-zhuan, LEI Hui, et al. Analysis of the effects on surface temperature and ocean color environment by typhoon Nari based on remote sensing[J]. Journal of Marine Science, 2009,27(2):64-70.
付东洋,丁又专,雷惠,等. “百合”台风对海表温度及水色环境影响的遥感分析[J]. 海洋学研究,2009,27(2):64-70.
[4] LI Jun, LIN Ju, FENG Hai-hong. Effects of typhoon ‘Meranti’ on acoustic propagation characteristics[J]. Technical Acoustic, 2016,35(6):504-511.
李骏,林巨,冯海泓. 台风“莫兰蒂”对声传播特性的影响研究[J].声学技术,2016,35(6):504-511.
[5] WEN Hong-tao, YANG Yan-ming, WANG Ning, et al. Effects of typhoon “KAI-TAK” on deep ocean ambient noise in the South China Sea[J]. Acta Acoustic, 2016,41(6):804-812.
文洪涛,杨燕明,王宁,等. 台风“启德”对南海完整深海声道海洋环境噪声特性的影响研究[J]. 声学学报,2016,41(6):804-812.
[6] ZHANG Xu, ZHANG Yong-gang, ZHANG Jian-xue, et al. The effect of ocean mixed-layer structure on acoustic propagation in a surface duct environment[J]. Acta Oceanologica Sinica, 2012,34(1):79-89.
张旭,张永刚,张健雪,等. 海洋混合层结构对表面声道中声传播特性的影响分析[J]. 海洋学报:中文版,2012,34(1):79-89.
[7] RUAN Hai-lin, YANG Yan-ming, WEN Hong-tao, et al. Preliminary study on effects of typhoon Usagi on underwater sound propagation[C]//Ocean Acoustics. IEEE, 2016:1-7.
[8] YANG Guang-bing, LU Lian-gang, WANG Guan-suo, et al. Coastal sound-field change due to typhoon-induced sediment warming[J]. Journal of the Acoustical Society of America, 2016, 140(3):EL242.
[9] WU Ling-wei, LING Zheng. Analysis of sea surface salinity response to typhoon in the Northwest Pacific based on Argo data[J].Journal of Marine Science, 2015,33(3):1-6.
吴铃蔚,凌征. 基于Argo资料的西北太平洋海表面盐度对台风的响应特征分析[J]. 海洋学研究,2015,33(3):1-6.
[10] TAPPERT F D. The parabolic approximation method[J]. Wave Propagation & Underwater Acoustics, 1977, 70:224-287.
[11] COLLINS M D. A Split-step Padé Solution for the Parabolic Equation Method[J]. Journal of the Acoustical Society of America, 1993, 93(4):1 736-1 742.
[12] COLLINS M D, CEDERBERG R J, KING D B, et al. Comparison of algorithms for solving parabolic wave equations[J]. Journal of the Acoustical Society of America, 1996, 100(1):178-182.
[13] XU Wen-ling. The impact of the typhoon on sea surface temperature[D]. Qingdao: Ocean University of China, 2007.
徐文玲. 台风对海表温度的影响[D]. 青岛:中国海洋大学,2007.
[14] YANG Yong-hong, WANG Cui-jie. Comparison of two methords for calculating ocean sound speed profiles based on pressure and depth[J]. Hydrographic Surveying and Charting, 2015,35(3):64-66.
杨永红,王翠杰. 基于压强和深度的两种不同声速计算方法比较[J].海洋测绘,2015,35(3):64-66.
[15] LEROY C C, ROBINSON S P, GOLDSMITH M J. A new equation for the accurate calculation of sound speed in all oceans[J]. Journal of the Acoustical Society of America, 2008, 124(5):2 774-2 782.
[16] DUAN Rui. Studies on sound propagation and source localization methods in deep water[D]. Xi'an: Northwestern Polytechnical University, 2016.
段睿. 深海环境水声传播及声源定位方法研究[D]. 西安:西北工业大学,2016.
基金
国家海洋公益性行业科研专项项目资助(201305019);广东省自然科学基金资助(2014A030313603,2014A030310256);广东省科技计划项目资助(2013B030200002,2016A020222016);广东海洋大学创新强校项目资助(GDOU2014050226);广东省普通高校优秀青年创新人才培养计划项目资助(2012WYM_0077)