海洋再分析数据集中印度洋季节内信号的评估

蒙泽, 周磊, 秦箭煌, 付红丽, 王关锁

海洋学研究 ›› 2019, Vol. 37 ›› Issue (4) : 1-13.

PDF(6547 KB)
PDF(6547 KB)
海洋学研究 ›› 2019, Vol. 37 ›› Issue (4) : 1-13. DOI: 10.3969/j.issn.1001-909X.2019.04.001.
研究论文

海洋再分析数据集中印度洋季节内信号的评估

  • 蒙泽1,2,3, 周磊*3, 秦箭煌3, 付红丽4, 王关锁5
作者信息 +

Assessment of intraseasonal variabilities over Indian Ocean based on oceanic reanalysis datasets

  • MENG Ze1,2,3, ZHOU Lei*3, QIN Jian-huang3, FU Hong-li4, WANG Guan-suo5
Author information +
文章历史 +

摘要

季节内变化是热带气候的重要影响因素。以北半球夏、冬两季为例,对比了海洋再分析数据集(ECCO2、SODA3和CORA)与卫星观测海表面温度(SST)以及海表面高度(SSH)在印度洋区域季节内信号的差异;还以冬季MJO(Madden Julian Oscillation)事件和夏季季风事件为例,对比分析了不同强迫过程中再分析数据与观测数据的差异与原因。结果表明,再分析产品在近岸海域具有与观测数据相当的季节内波动,但是在大洋内部,除CORA在赤道中印度洋略强于观测数据,其他再分析数据季节内波动明显弱于观测数据20%以上,SODA3甚至达到60%以上。具体来说,在东传MJO和北传CIO (Central Indian Ocean mode) 事件期间,再分析数据中热力强迫下的季节内SST变化呈现较好,仅ECCO2和CORA在相位上滞后观测数据5~10 d。在夏季CIO的SST异常西传期间,再分析数据中动力强迫下的季节内变化呈现较差,ECCO2和CORA仅在85°E~95°E呈现出微弱的西传信号,SODA3的SST异常并未西传;而且强度上,90°E~100°E附近所有再分析SST异常均弱于观测数据50%以上。通过对比东印度洋上混合层季节内流速发现,CIO事件期间再分析流速振幅弱于观测数据51.42%,且CIO波峰期间与观测数据的相对偏差达到65.16%。再分析数据中动力强迫的信号呈现较弱,可能是导致季节内变化在大洋中部明显弱于观测数据的原因。因此,要提升再分析产品中季节内信号,不仅需要关注热力与动力强迫的修正,更需要扩大海洋观测以增加数据同化,尤其是在赤道印度洋海域需要加强对海流的观测。

Abstract

Intraseasonal variabilities (ISVs) are important factors in tropical climate. The ISVs like sea surface temperature (SST) and sea surface height (SSH) from oceanic reanalysis ECCO2, SODA3 and CORA were compared with the satellite observations during boreal summer and winter. Intraseasonal SST anomalies were also further compared during MJO and CIO cases. Results show that the ISVs from reanalysis data have the same clear variabilities nearshore as the observations, while within the ocean, the ISVs standard deviation (STD) of reanalysis data is weaker than that of the observation data for at least 20%, SODA3 even faces the differences up to 60%. During the eastward propagation of MJO and northward propagation of CIO, the SST anomalies induced by thermal force is well simulated by the reanalysis data, only ECCO2 and CORA encounter a phase lag of 5-10 days. During the westward propagation of SST anomalies at CIO, reanalysis data have an awful simulation for this dynamic forced ISVs. ECCO2 and CORA propagate to the west in a small area from 85°E-95°E feebly, and even that in SODA3 doesn’t show its westward signals. Temperature in all reanalysis data is a half weaker than the observations at eastern Indian Ocean (90°E-100°E). Through comparison in intraseasonal velocity anomalies, the STD of reanalysis data is far less than RAMA (51.42%), the averages among the peaks of velocity are also weaker than observations for 65.16%. This suggests that improper simulation of dynamically-forcing ISVs may lead to the weaker variabilities within Indian Ocean. Therefore, in order to upgrade the ISVs in reanalysis, it is necessary to modify the heat forcing as well as dynamic forcing in atmospheric modeling and, more importantly, add up the oceanic assimilation. Equatorial Indian Ocean, as the prevalent area for ISV events and the area with clear difference in STD, is surely a region for more observation plans with oceanic variabilities like currents.

关键词

印度洋 / 季节内振荡 / MJO / CIO / 海洋再分析数据集

Key words

Indian Ocean / intraseasonal variability / Madden-Julian Oscillation / Central Indian Ocean mode / ocean reanalysis datasets

引用本文

导出引用
蒙泽, 周磊, 秦箭煌, 付红丽, 王关锁. 海洋再分析数据集中印度洋季节内信号的评估[J]. 海洋学研究. 2019, 37(4): 1-13 https://doi.org/10.3969/j.issn.1001-909X.2019.04.001.
MENG Ze, ZHOU Lei, QIN Jian-huang, FU Hong-li, WANG Guan-suo. Assessment of intraseasonal variabilities over Indian Ocean based on oceanic reanalysis datasets[J]. Journal of Marine Sciences. 2019, 37(4): 1-13 https://doi.org/10.3969/j.issn.1001-909X.2019.04.001.
中图分类号: P731   

参考文献

[1] LAU K M, CHAN P H. Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part I: Simultaneous relationships[J]. Journal of the Atmospheric Sciences, 1983, 40(12): 2 735-2 750.
[2] LAU K M, CHAN P H. Aspects of the 40-50 day oscillation during the northern summer as inferred from outgoing longwave radiation[J]. Monthly Weather Review, 1986, 114(7): 1 354-1 367.
[3] WANG B, RUI H. Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975-1985[J]. Meteorology and Atmospheric Physics, 1990, 44(1-4): 43-61.
[4] XU Ya-mei, LI T, PENG M. Roles of the synoptic-scale wave train, the intraseasonal oscillation, and high-frequency eddies in the genesis of Typhoon Manyi (2001)[J]. Journal of the Atmospheric Sciences, 2014, 71(10): 3 706-3 722.
[5] KESSLER W S, KLEEMAN R. Rectification of the Madden-Julian oscillation into the ENSO cycle[J]. Journal of Climate, 2000, 13(20): 3 560-3 575.
[6] CASSOU C. Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic Oscillation[J]. Nature, 2008, 455(7 212): 523.
[7] SHINODA T, HENDON H H, GLICK J. Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans[J]. Journal of Climate, 1998, 11(7): 1 685-1 702.
[8] GRODSKY S A, BENTAMY A, CARTON J A, et al. Intraseasonal latent heat flux based on satellite observations[J]. Journal of Climate, 2009, 22(17): 4 539-4 556.
[9] ZENG Li-li, WANG Dong-xiao. Intraseasonal variability of latent-heat flux in the South China Sea[J]. Theoretical and Applied Climatology, 2009, 97(1-2): 53-64.
[10] WANG Lu, LI T, ZHOU Tian-jun. Intraseasonal SST variability and air-sea interaction over the Kuroshio Extension region during boreal summer[J]. Journal of Climate, 2012, 25(5): 1 619-1 634.
[11] FU Xiou-hua, WANG Bin, LI T, et al. Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean[J]. Journal of the Atmospheric Sciences, 2003, 60(15): 1 733-1 753.
[12] ZHOU Lei, MURTUGUDDE R, CHEN Da-ke, et al. A Central Indian Ocean mode and heavy precipitation during the Indian summer monsoon[J]. Journal of Climate, 2017, 30(6): 2 055-2 067.
[13] ZHOU Lei, MURTUGUDDE R, CHEN Da-ke, et al. Seasonal and interannual variabilities of the central Indian Ocean mode[J]. Journal of Climate, 2017, 30(16): 6 505-6 520.
[14] ZHOU Lei, MURTUGUDDE R, NEALE R, et al. Simulation of the Central Indian Ocean Mode in CESM: Implications for the Indian summer monsoon system[J]. Journal of Geophysical Research, 2018, 123(1): 58-72.
[15] NEWMAN M, SARDESHMUKH P D, BERGMAN J W. An assessment of the NCEP, NASA, and ECMWF reanalyses over the tropical west Pacific warm pool[J]. Bulletin of the American Meteorological Society, 2000, 81(1): 41-48.
[16] HWANG S, GRAHAM W D, ADAMS A, et al. Assessment of the utility of dynamically-downscaled regional reanalysis data to predict streamflow in west central Florida using an integrated hydrologic model[J]. Regional Environmental Change, 2013, 13(1): 69-80.
[17] KIM Daehyun, LEE Myong-In, KIM Dongmin, et al. Representation of tropical subseasonal variability of precipitation in global reanalyses[J]. Climate Dynamics, 2014, 43(1-2): 517-534.
[18] MENEMENLIS D, CAMPIN J M, HEIMBACH P, et al. ECCO2: High resolution global ocean and sea ice data synthesis[J]. Mercator Ocean Quarterly Newsletter, 2008, 31: 13-21.
[19] CARTON J A, CHEPURIN G A, CHEN L. SODA3: A new ocean climate reanalysis[J]. Journal of Climate, 2018, 31(17): 6 967-6 983.
[20] WANG Lu, ZHOU Tian-jun. Assessing the quality of regional ocean reanalysis data from ENSO signals[J]. Atmospheric and Oceanic Science Letters, 2012, 5(1): 55-61.
[21] WANG Dong-xiao. Analysis of seasonal and interannual variability of sea surface temperature for China seas based on CORA dataset[J]. Acta Oceanologica Sinica, 2013, 35(1): 44-54..
[22] AMOL P, SHANKAR D, FERNANDO V, et al. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope[J]. Journal of Earth System Science, 2014, 123(5): 1 045-1 074.
[23] KISTLER R, KALNAY E, COLLINS W, et al. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation[J]. Bulletin of the American Meteorological Society, 2001, 82(2): 247-268.
[24] SHANNON C E. Communication in the presence of noise[J]. Proceedings of the IEEE, 1949, 86(2): 447-457.
[25] WHEELER M C, HENDON H H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction[J]. Monthly Weather Review, 2004, 132(8): 1 917-1 932.
[26] BROWN O B, BRUCE J G, EVANS R H. Evolution of sea surface temperature in the Somali Basin during the southwest monsoon of 1979[J]. Science, 1980, 209(4 456): 595-597.
[27] SCHILLER A, WIJFFELS S E, SPRINTALL J, et al. Pathways of intraseasonal variability in the Indonesian Throughflow region[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 174-200.
[28] CHENG Xu-hua, XIE Shang-ping, MCCREARY J P, et al. Intraseasonal variability of sea surface height in the Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2013, 118(2): 816-830.
[29] SHINODA T, HENDON H H, GLICK J. Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans[J]. Journal of Climate, 1998, 11(7): 1 685-1 702.
[30] GIRISHKUMAR M S, RAVICHANDRAN M, MCPHADEN M J, et al. Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2011, 116:C03009.
[31] STEVENSON J W, NIILER P P. Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment[J]. Journal of Physical Oceanography, 1983, 13(10): 1 894-1 907.
[32] HENDON H H. Indonesian rainfall variability: Impacts of ENSO and local air-sea interaction[J]. Journal of Climate, 2003, 16(11): 1 775-1 790.

基金

国家自然科学基金重大研究计划项目资助(41690121);国家自然科学基金重点项目资助(41530961);国家自然科学基金创新研究群体项目资助(41621064)

PDF(6547 KB)

Accesses

Citation

Detail

段落导航
相关文章

/