利用WorldView-2高分辨率卫星影像,以南海北岛附近海域为研究区,研究了两种水深反演模型——对数变换模型(Stumpf 2003)和双波段线性回归模型(Lyzenga 1985)。分析了不同底质情况下水深与各波段的相关性,并利用L-M(Levenberg-Marquardt)算法求解模型参数,然后对两种模型反演的水深结果的精度进行了对比分析。对于珊瑚底质,Lyzenga 1985模型水深反演的决定系数和均方根误差分别为0.902和1.651,均优于Stumpf 2003模型(0.882,6.421);对于砂质底质,Lyzenga 1985模型水深反演的决定系数和均方根误差分别为0.897和0.529,均优于Stumpf 2003模型(0.779,0.723)。可见,在水体清澈的珊瑚底质和砂质底质区域,Lyzenga 1985模型的水深反演精度均优于Stumpf 2003模型,Lyzenga 1985模型普适性更强,能够呈现出较为稳定的反演效果。
Abstract
Using the WorldView-2 high-resolution satellite images, two models were studied: log transform model(Stumpf 2003) and dual bands linear regression model(Lyzenga 1985). Firstly, the correlation between water depth and each band was analyzed under different sediment conditions. Then the L-M(Levenberg-Marquardt) algorithm was used to solve the model parameters. Finally, the accuracy of the two models was compared and analyzed. The results show that for coral sediment, the determination coefficient and root mean square error of Lyzenga 1985 model are 0.902 and 1.651 respectively, which are better than those of Stumpf 2003 model(0.882, 6.421); For sandy sediment, the determination coefficient and root mean square error of Lyzenga 1985 model are 0.897 and 0.529 respectively, which are better than those of Stumpf 2003 model(0.779, 0.723). It can be seen that Lyzenga 1985 model is better than Stumpf 2003 model in the area of clear coral and sandy sediment, and Lyzenga 1985 model has stronger universality and can present relatively stable inversion effect.
关键词
水深反演 /
对数变换模型 /
双波段线性回归模型 /
L-M算法 /
反演精度
Key words
bathymetric inversion /
logarithmic transformation model /
two-bands linear regression model /
Levenberg-Marquardt algorithm /
the inversion accuracy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 梁士英. 利用TM数据反演浅海水深方法研究[D]. 青岛:山东科技大学,2012.
LIANG Shiying. Research on the method of retrieving shallow water depth using TM data[D]. Qingdao: Shandong University of Science and Technology, 2012.
[2] GREEN E P, MUMBY P J, EDWARDS A J, et al. Remote sensing handbook for tropical coastal management[M]. Paris: UNESCO, 2000: 119-233.
[3] LYZENGA D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 1978, 17(3): 379-383.
[4] LYZENGA D R. Shallow-water bathymetry using combined lidar and passive multispectral scanner data[J]. International Journal of Remote Sensing 1985, 6(1): 115-125.
[5] STUMPF R P, HOLDERIED K, SINCLAIR M. Determination of water depth with high-resolution satellite imagery over variable bottom types[J]. Limnology and Oceanography, 2003, 48(1): 547-556.
[6] JORGE N, STEPHEN J W. Numerical optimization[M]. New York, Berlin Heidelberg: Springer-Verlag, 1996: 34-60.
[7] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.
[8] LEVENBERG K. A method for the solution of certain non-linear problems in least squares[J]. Quart Appl Math, 1994, 2(2): 164-468.
[9] 郑伟,曾志远. 遥感图像大气校正方法综述[J]. 遥感信息,2004(4):66-70.
ZHENG Wei, ZENG Zhiyuan. Overview of atmospheric correction methods for remote sensing images[J]. Remote Sensing Information, 2004(4): 66-70.
[10] VERMOTE E F, TANRE D. Second simulation of the satellite signal in the solar spectrum, 6S: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675-686.
[11] HEDLEY J D, HARBORNE A R, MUMBY P J. Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos[J]. International Journal of Remote Sensing, 2005, 26(10): 2107-2112.
[12] 曹斌,邱振戈,曹彬才. 四种遥感浅海水深反演算法的比较[J]. 测绘科学技术学报,2016,33(4):388-393.
CAO Bin, QIU Zhen'ge, CAO Bincai. Comparison of four remote sensing shallow water depth inversion algorithms[J]. Journal of Surveying and Mapping Science and Technology, 2016, 33(4): 388-393.
[13] GOODMAN J A, LEE Z, USTIN S L. Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii[J]. Applied Optics, 2008, 47(28): 1-11.
[14] HOCHBERG E J, ANDREFOUET S, TYLER M R. Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments[J]. IEEE Trans Geosci Remote Sensing, 2003, 41(7): 1724-1729.
[15] LYZENGA D R, MALINAS N P, TANIS F J. Multispectral bathymetry using a simple physically based algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2251-2259.
[16] 于杰,杜飞雁,陈国宝,等. 基于遥感技术的大亚湾海岸线的变迁研究[J]. 遥感技术与应用,2009,24(4):512-516.
YU Jie, DU Feiyan, CHEN Guobao, et al. Research on the change of Daya Bay coastline based on remote sensing technology[J]. Remote Sensing Technology and Application, 2009, 24(4): 512-516.
[17] 郭晓雷,邱振戈,沈蔚,等. 基于WorldView-2遥感影像的龙湾港浅海水深反演[J]. 海洋学研究,2017,35(3):27-33.
GUO Xiaolei, QIU Zhen'ge, SHEN Wei, et al. Inversion of shallow water depth in Longwan port based on WorldView-2 remote sensing image[J]. Journal of Marine Sciences, 2017, 35(3): 27-33.
基金
地理信息工程国家重点实验室开放研究基金资助项目(SKLGIE2017-Z-3-3);国家重点研发计划课题资助(2018YFC1405903)