亚洲大陆边缘海底峡谷的形态、分布及演化进程

王雁冰, 韩喜彬, 胡智龙, 赵宁, 阳凡林, 葛倩, 许冬, 高金耀

海洋学研究 ›› 2020, Vol. 38 ›› Issue (4) : 48-57.

PDF(4246 KB)
PDF(4246 KB)
海洋学研究 ›› 2020, Vol. 38 ›› Issue (4) : 48-57. DOI: 10.3969/j.issn.1001-909X.2020.04.005
研究论文

亚洲大陆边缘海底峡谷的形态、分布及演化进程

  • 王雁冰1,2,3, 韩喜彬*2,3, 胡智龙1,2,3, 赵宁1,2,3, 阳凡林1, 葛倩2,3, 许冬2,3, 高金耀2,3
作者信息 +

Morphology, distribution and evolution process of submarine canyons in the Asian Continental Margin

  • WANG Yanbing1,2,3, HAN Xibin*2,3, HU Zhilong1,2,3, ZHAO Ning1,2,3, YANG Fanlin1, GE Qian2,3, XU Dong2,3, GAO Jinyao2,3
Author information +
文章历史 +

摘要

基于SRTM15_Plus水深数据,利用地形表面流水分析与等高线几何分析相结合的方法对亚洲大陆边缘海底峡谷进行识别,分析峡谷的形态、分布及演化进程。共识别出海底峡谷531条,按照平面形态分为直线型、蛇曲型和树枝型三种,数量分别为239条、75条和217条。直线型峡谷主要分布在白令海盆地、千岛盆地、南海等海域;蛇曲型峡谷主要分布在孟加拉湾东部俯冲带海域;树枝型峡谷主要分布在日本海沟、伊豆小笠原海沟和南海海槽交界处,南海以及苏门答腊俯冲带海域。根据峡谷的形态与分布,结合研究区内构造背景,讨论了峡谷“直线型-蛇曲型”的形态演化进程,并依据树枝型峡谷主干谷的形态信息,推测存在“蛇曲型-树枝型”、“直线性-树枝型”的形态演化进程。

Abstract

Based on the SRTM15_Plus depth data, the submarine canyons in the Asian Continental Margin were identified by using the method of combining topographic surface flow analysis with contour geometry analysis. And the morphology, distribution characteristics and evolution process of the canyons in the study area were analyzed. A total of 531 submarine canyons are identified and divided into linear, meandering and dendritic according to the plane shape. The numbers of each type of canyon are 239, 75 and 217 respectively. Linear canyons are mainly distributed in the Bering Sea Basin, the Kuril Basin and the South China Sea. Meandering canyons are mainly distributed in the subduction zone east of the Bay of Bengal. Dendritic canyons are mainly distributed in the junction of the Japan Trench, the Izu Bonin Trench and the Nankai Trough, the South China Sea and the Sumatra subduction zone. According to the distribution of the canyons and the tectonic background in the study area, the morphological evolution process of “Linear-Meandering” was discussed. According to the morphological information of the main valley of dendritic canyons, it is inferred that there are “Linear-Dendritic” and “Meandering-Dendritic” morphological evolution processes.

关键词

亚洲大陆边缘 / 海底峡谷 / 识别 / 分布特征 / 演化

Key words

the continental margin in Asia / submarine canyon / identification / distribution features / evolution

引用本文

导出引用
王雁冰, 韩喜彬, 胡智龙, 赵宁, 阳凡林, 葛倩, 许冬, 高金耀. 亚洲大陆边缘海底峡谷的形态、分布及演化进程[J]. 海洋学研究. 2020, 38(4): 48-57 https://doi.org/10.3969/j.issn.1001-909X.2020.04.005
WANG Yanbing, HAN Xibin, HU Zhilong, ZHAO Ning, YANG Fanlin, GE Qian, XU Dong, GAO Jinyao. Morphology, distribution and evolution process of submarine canyons in the Asian Continental Margin[J]. Journal of Marine Sciences. 2020, 38(4): 48-57 https://doi.org/10.3969/j.issn.1001-909X.2020.04.005
中图分类号: P737.2   

参考文献

[1] 罗伟东,周娇,李学杰,等.南海海盆盆西峡谷的形态与结构及形成演化[J].地球科学,2018,43(6):2172-2183.
LUO Weidong, ZHOU Jiao, LI Xuejie, et al. Morphology and structure and evolution of West basin canyon, South China Sea[J]. Earth Science, 2018, 43(6): 2172-2183.
[2] 苏明,李俊良,姜涛,等.琼东南盆地中央峡谷的形态及成因[J].海洋地质与第四纪地质,2009,29(4):85-93.
SU Ming, LI Junliang, JIANG Tao, et al. Morphological features and formation mechanism of central canyon in the Qiongdongnan basin, Northern South China Sea[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 85-93.
[3] SCHOLL D W, BUFFINGTON E C, HOPKINS D M, et al. The structure and origin of the large submarine canyons of the Bering Sea[J]. Marine Geology, 1970, 8(3-4): 187-210.
[4] 赵月霞,刘保华,李西双,等.东海陆坡海底峡谷—扇体系沉积特征及物质搬运[J].古地理学报,2011,13(1):119-126.
ZHAO Yuexia, LIU Baohua, LI Xishuang, et al. Sedimentary characters and material transportation of submarine canyon-fan systems in slope of the East China Sea[J]. Journal of Palaeogeography, 2011, 13(1): 119-126.
[5] 丁巍伟,李家彪,李军.南海北部陆坡海底峡谷形成机制探讨[J].海洋学研究,2010,28(1):26-31.
DING Weiwei, LI Jiabiao, LI Jun. Forming mechanism of the submarine canyon on the north slope of the South China Sea[J]. Journal of Marine Sciences, 2010, 28(1): 26-31.
[6] 殷绍如,王嘹亮,郭依群,等.东沙海底峡谷的地貌沉积特征及成因[J].中国科学:地球科学,2015,45(3):275-289.
YIN Shaoru, WANG Liaoliang, GUO Yiqun, et al. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea[J]. Science China: Earth Sciences, 2015, 45(3): 275-289.
[7] 李景瑞,刘升发,吴建政,等.孟加拉扇沉积作用与古气候研究进展[J].海洋科学,2016,40(6):139-157.
LI Jingrui, LIU Shengfa, WU Jianzheng, et al. Advances in studies of sedimentation and paleoclimatology in the Bay of Bengal[J]. Marine Sciences, 2016, 40(6): 139-157.
[8] 丁巍伟,李家彪,李军,等.南海珠江口外海底峡谷形成的控制因素及过程[J].热带海洋学报,2013,32(6):63-72.
DING Weiwei, LI Jiabiao, LI Jun, et al. Formation process and controlling factors of the Pearl River Canyon in the South China Sea[J]. Acta Oceanologica Sinica, 2013, 32(6): 63-72.
[9] 赵月霞,刘保华,李西双,等.东海陆坡不同类型海底峡谷的分布构造响应[J].海洋科学进展,2009,27(4):460-468.
ZHAO Yuexia, LIU Baohua, LI Xishuang, et al. Distributions of different submarine canyons on the East China Sea slope and their tectonic response[J]. Advances in Marine Science, 2009, 27(4): 460-468.
[10] 栾坤祥.南海北部海底峡谷识别方法构建与峡谷特征分析[D].青岛:国家海洋局第一海洋研究所,2017.
LUAN Kunxiang. The Construction identification method of submarine canyon and characteristics analysis of northern south China sea[D]. Qingdao: The First Institute of Oceanography, SOA, 2017.
[11] HARRIS P T, WHITEWAY T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins[J]. Marine Geology, 2011, 285(1-4): 69-86.
[12] 张庆余,韩喜彬,张志毅,等.海底峡谷的分类与识别研究进展[J].海洋测绘,2019,39(1):11-13.
ZHANG Qingyu, HAN Xibin, ZHANG Zhiyi, et al. Research progress on classification and recognition of submarine canyon[J]. Hydrographic Surveying and Charting, 2019, 39(1): 11-13.
[13] 黄培之.提取山脊线和山谷线的一种新方法[J].武汉大学学报(信息科学版),2001,26(3):247-252.
HUANG Peizhi. A new method for extracting terrain feature lines from digitized terrain data[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 247-252.
[14] 李江海,张华添,李洪林.印度洋大地构造背景及其构造演化——印度洋底大地构造图研究进展[J].海洋学报,2015,37(7):1-14.
LI Jianghai, ZHANG Huatian, LI Honglin. The tectonic setting and evolution of Indian ocean-research progress of tectonic map Indian ocean[J]. Acta Oceanologica Sinica, 2015, 37(7): 1-14.
[15] 李三忠,余珊,赵淑娟,等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质,2013,33(3):65-94.
LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the east Asian continental magin[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 65-94.
[16] 李三忠,索艳慧,刘鑫,等.南海的基本构造特征与成因模型:问题与进展及论争[J].海洋地质与第四纪地质,2012,32(6):35-53.
LI Sanzhong, SUO Yanhui, LIU Xin, et al. Basic strcutural pattern and tectonic models of the South China Sea: Problems, advances and controversies[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 35-53.
[17] 徐茂泉,陈友飞.海洋地质学[M].厦门:厦门大学出版社,1999.
XU Maoquan, CHEN Youfei. Marine geology[M]. Xiamen: Xiamen University Press, 1999.
[18] RODRIGUEZ E, MORRIS C S, BELZ J E. A global assessment of the SRTM performance[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(3): 249-260.
[19] 吴自银,王小波,金翔龙,等.冲绳海槽弧后扩张证据及关键问题探讨[J].海洋地质与第四纪地质,2004,24(3):67-76.
WU Ziyin, WANG Xiaobo, JIN Xianglong, et al. The evidences of the backarc spreading and discussion on the key issues in the Okinawa trough[J]. Marine Geology & Quaternary Geology, 2004, 24(3): 67-76.
[20] 毛凯楠,解习农.深水峡谷体系研究现状及其地质意义[J].地质科技情报,2014,33(2):21-27.
MAO Kainan, XIE Xinong. Research reiews of submarine canyons system and its geological significance[J]. Geological Science and Technology Information, 2014, 33(2): 21-27.
[21] 郭雨帆,宫伟,罗佳宏,等.西北太平洋俯冲带断裂几何学特征[J].华北地震科学,2017,35(4):1-10.
GUO Yufan, GONG Wei, LUO Jiahong, et al. Fracture geometry feature of the northwest-Pacific subduction zones[J]. North China Earthquake Sciences, 2017, 35(4): 1-10.
[22] 王雪峰,吕福亮,范国章,等.孟加拉湾若开盆地构造特征及演化[J].成都理工大学学报(自然科学版),2013,40(4):424-430.
WANG Xuefeng, LÜ Fuliang, FAN Guozhang, et al. Structural characteristics and evolution of Rakhine Basin, Bay of Bengal[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(4): 424-430.
[23] 唐鹏程,吕福亮,范国章,等.孟加拉湾若开褶皱带晚新生代构造特征初步研究[J].地质学报,2013,87(7):1013-1020.
TANG Pengcheng, LÜ Fuliang, FAN Guozhang, et al. A preliminary study on the late Cenozoic structural characteristics of the Arakan Fold Belt, Bay of Bengal [J]. Acta Geologica Sinica, 2013, 87(7): 1013-1020.
[24] 洪汉净,陈会仙,赵谊,等.全球地震、火山分布及其变化特征[J].地震地质,2009,31(4):573-583.
HONG Hanjing, CHEN Huixian, ZHAO Yi, et al. Global earthquacks and volcanoes: Distribution and variations[J]. Seismology and Egology, 2009, 31(4): 573-583.
[25] WIEDICKE M, SAHLING H, DELISLE G, et al. Characteristics of an active vent in the fore-arc basin of the Sunda Arc, Indonesia[J]. Marine Geology, 2002, 184(1-2): 121-141.
[26] COLLEY H, HINDLE W H. Volcano-tectonic evolution of Fiji and adjoining marginal basins[J]. Geological Society London Special Publications, 1984, 16(1): 151-162.
[27] 吴时国,坂本泉.菲律宾海钱洲深海峡谷沉积作用与发育演化[J].科学通报,2001,46(S1):84-88.
WU Shiguo, BANBEN Quan. Sedimentation and evolution of the Zenisu deep-sea channel, Philippine Sea[J]. Chinese Science Bulletin, 2001,46(S1): 84-88.

基金

中央级公益性科研院所基本科研业务费专项资金资助项目(YJJC2001); “全球变化与海气相互作用”专项项目(GASI-GEOGE-05, GASI-GEOGE-03, GASI-02-PAC-CJ07); 浙江省科技厅青山湖海洋科技创新载体建设项目(2017E80001)

PDF(4246 KB)

Accesses

Citation

Detail

段落导航
相关文章

/