我国东南沿海坛紫菜遗传多样性研究

吴晓雯, 王铁杆, 刘颖, 张鹏

海洋学研究 ›› 2020, Vol. 38 ›› Issue (4) : 58-64.

PDF(1481 KB)
PDF(1481 KB)
海洋学研究 ›› 2020, Vol. 38 ›› Issue (4) : 58-64. DOI: 10.3969/j.issn.1001-909X.2020.04.006
研究报道

我国东南沿海坛紫菜遗传多样性研究

  • 吴晓雯, 王铁杆, 刘颖, 张鹏*
作者信息 +

Genetic diversity of Pyropia haitanensis along the southeast coast of China

  • WU Xiaowen, WANG Tiegan, LIU Ying, ZHANG Peng*
Author information +
文章历史 +

摘要

利用线粒体COX和叶绿体rbcL基因片段对我国东南沿海坛紫菜(Pyropia haitanensis Chang et Zheng)9个野生群体和2个养殖群体(共125个个体)进行遗传多样性分析。比对分析后得到408 bp的COX基因片断和488 bp的rbcL基因片断。联合分析的基因片断长度为896 bp,其中T、C、A、G的含量分别为34.9%、14.6%、34.2%和16.3%。检测到变异位点128个,其中单碱基变异位点19个,简约信息位点109个。群体的平均核苷酸多样性为0.035 9±0.028 4,单倍型多样性为0.817 0±0.024 0。125个个体共定义了31个单倍型,其中Hap1、Hap10和Hap16是核心单倍型,分别占全部样本的32.8%、12.8%和24.8%。群体遗传距离和地理距离相关性检测显示二者呈线性相关(R2=0.002 2,p=0.735 4),即遗传距离随地理距离的增大而增大,但未形成地理隔离。根据单倍型构建的ML树显示,坛紫菜群体之间没有明显的地理谱系结构,表明各个群体之间存在基因交流。

Abstract

Pyropia haitanensis is one of the most important economic seaweeds for mariculture in China. In order to investigate genetic diversity of P. haitanensis, we collected 125 individuals from 11 populations along the southeast coast of China. We amplified 408 bp length of COX gene fragments and 488 bp length of rbcL gene fragments. The concatenated COX and rbcL gene fragments had a length of 896 bp, and the ratios of T, C, A, G were 34.9%, 14.6%, 34.2% and 16.3%, respectively. We detected 128 mutation sites, including 19 single-base mutation and 109 simple information sites. The mean nucleotide and haplotype diversity of 11 populations were 0.035 9±0.028 4 and 0.817 0±0.024 0, respectively. The concatenated COX and rbcL gene fragments defined 31 haplotypes from 125 individuals, and Hap1,Hap10 and Hap16 were the core haplotypes, accounting for 32.8%, 12.8% and 24.8% of all individuals, respectively. The result of distance analysis showed a linear correlation between population-pairwise genetic distances and geographic distances (R2=0.002 2, p=0.735 4). Genetic distance increased with the increased geographic distance, but geographic isolation had not yet been formed. The ML tree constructed from haplotypes showed no obvious geographical lineage structure in P. haitanensis, indicating potential gene exchange among populations.

关键词

坛紫菜 / COX基因 / rbcL基因 / 遗传多样性

Key words

Pyropia haitanensis / COX gene / rbcL gene / genetic diversity

引用本文

导出引用
吴晓雯, 王铁杆, 刘颖, 张鹏. 我国东南沿海坛紫菜遗传多样性研究[J]. 海洋学研究. 2020, 38(4): 58-64 https://doi.org/10.3969/j.issn.1001-909X.2020.04.006
WU Xiaowen, WANG Tiegan, LIU Ying, ZHANG Peng. Genetic diversity of Pyropia haitanensis along the southeast coast of China[J]. Journal of Marine Sciences. 2020, 38(4): 58-64 https://doi.org/10.3969/j.issn.1001-909X.2020.04.006
中图分类号: S968.43   

参考文献

[1] 王旭雷,马颖超,鲁晓萍,等.法紫菜生物多样性及其栽培生物学基础[J].海洋科学,2017,41(2):125-135.
WANG Xulei, MA Yingchao, LU Xiaoping, et al. A review of species diversity of Pyropia and fundamental studies of Pyropia cultivation[J]. Marine Sciences, 2017, 41(2): 125-135.
[2] 丁洪昌,严兴洪.紫菜遗传育种研究进展[J].中国水产科学,2019,26(3):592-603.
DING Hongchang, YAN Xinghong. Advances in Pyropia (formerly Porphyra) genetics and breeding[J]. Journal of Fishery Sciences of China, 2019, 26(3): 592-603.
[3] 朱建一,严兴洪,丁兰平,等.中国紫菜原色图集[M].北京:中国农业出版社,2016:136.
ZHU Jianyi, YAN Xinghong, DING Lanping, et al. Color atlas of Chinese laver[M]. Beijing: Chinese Agricultural Press, 2016: 136.
[4] YAN Xinghong, LÜ Feng, LIU Changjun, et al. Selection and characterization of a high-temperature tolerant strain of Pyropia haitanensis Chang et Zheng (Bangiales, Rhodophyta)[J]. Journal of Applied Phycology, 2010, 22: 511-516.
[5] FRANKEL O H. Philosophy and strategy of genetic conservation in plants[C]//Third World Consultation on Forest Tree Breeding, Canberra, 1977: 1-11.
[6] 徐涤,宋林生,秦松,等.五个紫菜品系间遗传差异的RAPD分析[J].高技术通讯,2001,12(1):3-5,10.
XU Di, SONG Linsheng, QIN Song, et al. RAPD analysis of genetic variation among cultivated Porphyra[J]. Chinese High Technology Letters, 2001, 12(1): 3-5, 10.
[7] 杨锐,刘必谦,骆其君,等.利用扩增片段长度多态性(AFLP)研究坛紫菜的遗传变异[J].高技术通讯,2002,12(1):83-86.
YANG Rui, LIU Biqian, LUO Qijun, et al. Genetic variation of Porphyra haitanensis by applying AFLP[J]. Chinese High Technology Letters, 2002, 12(1): 83-86.
[8] 谢潮添,纪德华,陈昌生,等.ISSR标记在坛紫菜不同色泽丝状体种质鉴定中的应用[J].水产学报,2007,31(1):105-111.
XIE Chaotian, JI Dehua, CHEN Changsheng, et al. Application of ISSR markers in germplasm identification of different color's Porphyra haitanensis filament strains[J]. Journal of Fisheries of China, 2007, 31(1): 105-111.
[9] 王金丹,叶薇,南春容,等.浙南海域野生坛紫菜遗传多样性的ISSR分析[J].温州医学院学报,2012,42(5):469-473.
WANG Jindan, YE Wei, NAN Chunrong, et al. ISSR analysis of genetic diversity of wild Porphyra haitanensis in South Zhejiang[J]. Journal of Wenzhou Medical College, 2012, 42(5): 469-473.
[10] 张鹏,张源,王铁杆,等.坛紫菜不同品系亲缘关系的SSR标记分析[J].中国水产科学,2009,16(6):842-849.
ZHANG Peng, ZHANG Yuan, WANG Tiegan, et al. Phylogenetic relationship of the lines of Porphyra haitanensis (Rhodophyta, Bangials) determined by microsatellite DNA markers[J]. Journal of Fishery Sciences of China, 2009, 16(6): 842-849.
[11] BI Yanhui, WU Yaya, ZHOU Zhigang. Genetic diversity of wild population of Pyropia haitanensis based on SSR analysis[J]. Biochemical Systematics and Ecology, 2014, 54: 307-312.
[12] 王婷,徐燕,谢潮添,等.基于SCAR标记的坛紫菜“闽丰1号”多重PCR鉴定技术的建立[J].水产学报,2013,37(5):688-695.
WANG Ting, XU Yan, XIE Chaotian, et al. Construction of multiplex PCR in variety identification of Porphyra haitanensis “Z-26” based on SCAR markers[J]. Journal of Fisheries of China, 2013, 37(5): 688-695.
[13] LI Yanyan, SHEN Songdong, HE Lihong, et al. Sequence analysis of the ITS region and 5.8S rDNA of Porphyra haitanensis[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(3): 493-501.
[14] CHEN Changsheng, XIE Chaotian, JI Dehua, et al. Molecular divergence and application of the ITS-5.8S rDNA and RUBISCO spacer in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta)[J]. Aquaculture International, 2010, 18(6): 1045-1060.
[15] XU Pu, YANG Li'en, ZHU Jianyi, et al. Analysis of hybridization strains of Porphyra based on rbcL gene sequences[J]. Journal of Applied Phycology, 2011, 23(2): 235-241.
[16] FRESHWATER D W, RUENESS J. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species based upon rbcL nucleotide sequence analysis[J]. Phycologia, 1994, 33(3): 187-194.
[17] ROBBA L, RUSSELL S J, BARKER G L, et al. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta)[J]. American Journal of Botany, 2006, 93(8): 1101-1108.
[18] YOW Y Y, LIM P E, PHANG S M. Genetic diversity of Gracilaria changii (Gracilariaceae, Rhodophyta) from west coast, Peninsular Malaysia based on mitochondrial cox1 gene analysis[J]. Journal of Applied Phycology, 2011, 23(2): 219-226.
[19] DANGBJERG N, ANDERSEN R A. Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated[J]. Molecular Biology and Evolution, 1997, 14(12): 1242-1251.
[20] LIN S M, FREDERICQ S, HOMMERSAND M H. Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on LUS rDNA and rbcL sequences, including the Phycodryoideae, subfam. nov[J]. Journal of Phycology, 2001, 37(5): 881-899.
[21] LIBRADO P, ROZAS J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.
[22] NEI M, MANYAMA T, CHAKRABORTY R. The bottleneck effect and genetic variability in populations[J]. Evolution, 1975, 29(1): 1-10.
[23] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0[J]. Molecular Biochemical Evolution, 2013, 30(12): 2725-2729.
[24] KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120.
[25] LEIGH J W, BRYANT D. POPART: full-feature software for haplotype network construction[J]. Methods in Ecology, 2015, 6(9): 1110-1116.
[26] TAJIMA F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
[27] EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567.
[28] YANG E C, KIMM S, GERALDINO P J L, et al. Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta)[J]. Journal of Applied Phycology, 2008, 20(2): 161-168.
[29] 施立明.遗传多样性及其保存[J].生物科学信息,1990,2(4):158-164.
SHI Liming. Genetic diversity and its conservation[J], Bioscience Information, 1990, 2(4): 158-164.
[30] GRANT W S, BOWEN B W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. The Journal of Heredity, 1998, 89(5):415-426.
[31] 苏纪兰,袁业立.中国近海水文[M].北京:海洋出版社,2005:367.
SU Jilan, YUAN Yeli. Offshore hydrology in China[M]. Beijing: China Ocean Press, 2005: 367.

基金

浙江省水产新品种选育重大科技专项(2016C02055-6);温州市农业新品种选育协作组项目(2019ZX001);温州市科技项目(S2020008);农业部藻类产业技术体系(CARS-50)

PDF(1481 KB)

Accesses

Citation

Detail

段落导航
相关文章

/