针对移动式海洋地震仪对控制系统电路设计的可靠性和低功耗的需求,提出了一种基于Cortex-M4内核芯片的硬件电路设计方案。首先选用超低功耗的STM32L4芯片作为微控制单元,在保证高运行能力的同时降低自身功耗;其次针对MCU(Microprogrammed Control Unit)、传感器等超低功耗模块提出针对性的两级降压方案,从而大大提高电路的电能转换效率;对于浮力调节模块、通信模块等高功耗模块,选用合适的降压芯片保证电路安全和提高转换效率;最后针对外部设备的周围电路进行滤波和保护处理。通过试验分别验证了不同模块的可靠性,证明该硬件电路可以支撑地震仪完成完整的观测任务,电路设计可靠性高。
Abstract
Aiming at the requirements of the mobile ocean seismograph for high reliability and low power consumption of the control system, a hardware circuit design scheme based on the Cortex-M4 core was proposed. Firstly, the ultra-low-power consumption STM32L4 was selected as the MCU(Microprogrammed Control Unit) to ensure high operating capacity and reduce power consumption; secondly, a targeted two-level voltage reduction scheme was proposed for the ultra-low-power modules, such as MCU and sensor system, to greatly improve the power conversion efficiency of the circuit and a suitable buck chips was selected for the high-power modules such as buoyancy adjustment systems and communication systems to ensure circuit safety and improve the conversion efficiency. Finally, the peripheral circuit was filtered and protected. The reliability of the different modules was verified through tests which prove that the hardware circuit can support the seismograph to achieve the complete observation task and the circuit design is highly reliable.
关键词
移动式海洋地震仪 /
STM32 /
硬件电路 /
低功耗设计
Key words
mobile marine seismograph /
STM32 /
hardware circuit /
low-power design
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUKHOVICH A, BONNIEUX S, HELLO Y, et al. Seismic monitoring in the oceans by autonomous floats[J]. Nature Communications, 2015, 6: 8027. DOI: 10.1038/ncomms9027.
[2] WEBB S C. Broadband seismology and noise under the ocean[J].Reviews of Geophysics, 1998, 36(1): 105-142.
[3] SIMONS F J, NOLET G, GEORGIEF P, et al. On the potential of recording earthquakes for global seismic tomography by low-cost autonomous instruments in the oceans[J]. Journal of Geophysical Research, 2009, 114 (B05307). DOI: 10.1029/2008JB006088.
[4] SIMONS F J, NOLET G, BABCOCK J M, et al. A future for drifting seismic networks[J]. Eos Transactions American Geophysical Union, 2013, 87 (31): 305-307.
[5] JOUBERT C, NOLET G, SUKHOVICH A, et al. Hydrophone calibration at very low frequencies[J]. Bulletin of the Seismological Society of America, 2015, 105 (3): 1797-1802.
[6] 张树良,鲁景亮.普林斯顿大学成功开发新的海底地震监测设备[J].国际地震动态,2016(12):3.
ZHANG Shuliang, LU Jingliang. Researcher measures earthquakes in the oceans[J]. Recent Developments in World Seismology, 2016(12): 3.
[7] 丁巍伟,黄豪彩,朱心科,等.一种新型潜标式海洋地震仪及在海洋地震探测中的应用[J].地球物理学进展,2019,34(1):298-302.
DING Weiwei, HUANG Haocai, ZHU Xinke, et al. New mobile oceanic seismic recording system and its application in marine seismic exploration[J]. Progress in Geophysics, 2019, 34(1): 298-302.
[8] JOUBERT C, NOLET G, BONNIEUX S, et al. P-delays from floating seismometers (MERMAID), Part I: Data processing[J]. Seismological Research Letters, 2016, 87 (1): 73-80.
[9] HUANG Haocai, ZHANG Chenyun, DING Weiwei, et al. Design of the depth controller for a floating ocean seismograph[J]. Journal of Marine Science and Engineering, 2020, 8(3): 166.
[10] 綦声波.STM32L水下记录仪的软硬件低功耗设计[J].单片机与嵌入式系统应用,2016,16(4):60-63.
QI Shengbo. Software and hardware low power design of STM32L underwater recorder[J]. Microcontrollers & Embedded Systems, 2016, 16(4): 60-63.
[11] 竺春祥,鹿存跃.一种基于STM32的目标实时跟踪系统研究[J].半导体光电,2017(6):137-139.
ZHU Chunxiang, LU Cunyue. Design of 2D target tracking system based on STM32[J]. Semiconductor Optoelectronics, 2017(6):137-139.
[12] 杨友胜,杨翊坤,穆为磊,等.基于浮力驱动系统的低功耗升沉运动控制策略[J].华中科技大学学报:自然科学版,2019,47(6):57-62.
YANG Yousheng, YANG Yikun, MU Weilei, et al. Control strategy of low energy consumption rising and diving motion based on buoyancy actuation system[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(6): 57-62.
[13] 高世阳,崔汉国,张奇峰,等.深海油囊式浮力调节系统的研制[J].液压与气动,2016(10):75-80.
GAO Shiyang, CUI Hanguo, ZHANG Qifeng, et al. The development of a deep-sea oil bladder type buoyancy adjustment system[J]. Chinese Hydraulics & Pneumatics, 2016(10): 75-80.
基金
国家重点研发计划(2017YFC0305802);浙江省重点研发计划(2021C03186);国家自然科学基金(U1709202);“全球变化与海气相互作用”专项(GASI-02-SHB-15);中央级公益性科研院所基本科研业务费专项资金资助项目(JT1802)