
1976—2021年南澳岛海岸线时空演变及驱动因素分析
Spatio-temporal evolution and driving factors analysis of the coastline in Nan’ao Island from 1976 to 2021
海岸线是描述海陆分界的重要地理要素之一,其在自然因素及社会经济因素的双重影响下发生着不同强度的动态演变。基于Landsat系列卫星遥感影像,通过RS、GIS技术结合实地勘察,分析了1976—2021年间南澳岛海岸线时空演变,并运用灰色关联分析法进行驱动因素分析。结果表明:1)45年来南澳岛海岸线变迁显著,长度增长了11.06 km,分形维数呈升高趋势;2)研究期内,岸线类型由基岩为主的自然岸线向人工岸线转化,岸线利用程度综合指数呈增长趋势,岸线结构呈单一至多元发展的态势;3)南澳岛海岸线演变有明显的镇区差异,后宅镇受人为因素影响大,其演变较为显著,云澳、深澳两镇主要受到自然因素影响,其演变较为缓慢;4)台风(自然灾害)以及人口数量是南澳岛海岸线演变的主要驱动因素。
Coastline is one of the important geographical elements to describe the boundary between land and sea. Under the dual influence of natural factors and socio-economic factors, coastline dynamic evolution of different intensities continues to occur. Based on Landsat series satellite remote sensing images, the spatial and temporal evolution of the coastline of Nan’ao Island from 1976 to 2021 was analyzed by RS and GIS technology combined with field investigation, and the driving factors were analyzed by grey correlation analysis. The results show that : (1)In the past 45 years, the coastline of Nan’ao Island has changed significantly. The coastline length has increased by 11.06 km, and the fractal dimension have generally increased.(2)During the study period, the type of coastline changed from natural coastline dominated by bedrock to artificial coastline, the comprehensive index of coastline utilization show an increasing trend, and the main structure of coastline development and utilization show a form of single to multiple.(3)The evolution of the coastline of Nan’ao Island has obvious regional differences. That of Houzhai Town is greatly affected by human factors, and its evolution is more significant. The coastlines of Yun’ao and Shen’ao Towns are mainly affected by natural factors, and their evolutions are relatively slow.(4)Typhoon(natural disasters) and population are the main driving factors of the coastline evolution of Nan’ao Island.
Nan’ao Island / coastline / remote sensing / change analysis
[1] |
|
[2] |
马建华, 刘德新, 陈衍球. 中国大陆海岸线随机前分形分维及其长度不确定性探讨[J]. 地理研究, 2015, 34(2):319-327.
一个国家或地区海岸线长度的确定,应首先计算其标度区和分维,然后选用标度区下限附近的量测尺度进行量算。以1:50万电子地图为基础,在ArcGIS技术支持下选用33种尺度研究中国大陆海岸线的标度区及其盒计维,用手工作业法量测海岸线的量规维,并对中国现行大陆海岸线长度的可靠性进行讨论。结果表明:中国大陆海岸线的标度区在400~0.1 km之间。海岸线量规维和盒计维分别是1.2004和1.0929,量规维比盒计维更能精确表征海岸线不规则程度。杭州湾以南和以北海岸线的量规维分别是1.2565和1.1204。当量测尺度为0.1 km时,中国大陆海岸线的长度约21900 km;当尺度为0.25 km时,长度为18214 km,接近现行海岸线长度。
Coastline can be treated as a random prefractal object whose length is uncertain. Different lengths of the continental coastline of China were promulgated in the last century: 8000 km in 1914, 10537 km in 1935, 14000 km in the 1950s, and 18400.5 km in 1975, which has been used till now. How long is the continental coastline of China? To determine the coastline length of a country, we should calculate the scaling range and fractal dimension of the coastline first, and then measure the coastline length with the measurement scale at the lower or near the limit of the scaling range. Although many scholars investigated the fractal dimension and the length of the continental coastline of China, yet none of them identified the scale range of the coastline, which led to the results slightly inaccurate. The scaling range of the continental coastline of China on 1:500,000 map from the Google Earth Website was determined with 33 measurement scales, and the box-counting dimension was calculated automatically with the aid of ArcGIS software, while the divider dimension was calculated manually. Reliability of the length of Chinese coastline using popularly today was discussed in this paper. The results show that the scaling range of the continental coastline of China is from 400 km to 0.1 km. Within the scaling range, the box-counting dimension and the divider dimension of the coastline are 1.2004 and 1.0929, respectively. Divider dimension represents the irregularity of coastline more accurately than the box-counting dimension because the divider method is the most accurate method to measure the fractal dimension for linear geometric object. The divider dimension of the coastline south of the Hangzhou Bay is 1.2565, and that of north of the bay is 1.1204. The length of the continental coastline of China is about 21900 km when the measurement scale is 0.1 km, and 18214 km when the measurement scale is 0.25 km, which is close to the continental length of China (18400 km) used widely today. The measurement scale of 0.25 km is within the scaling range and in the vicinity of the lower scaling range limit, consequently, the current coastline length of China is accurate and acceptable. Our recommendation is that the fractal dimension of 1.2004 and measurement scale of 0.25 km should be annotated when the current coastline length of China is cited. |
[3] |
许淑梅, 吴鹏, 张威, 等. 南海关键地质历史时期的古海岸线变化[J]. 海洋地质与第四纪地质, 2013, 33(1):1-10.
|
[4] |
孙孟昊, 蔡玉林, 顾晓鹤, 等. 基于潮汐规律修正的海岸线遥感监测[J]. 遥感信息, 2019, 34(6):105-112.
|
[5] |
李加林, 田鹏, 邵姝遥, 等. 中国东海区大陆岸线变迁及其开发利用强度分析[J]. 自然资源学报, 2019, 34(9):1886-1901.
基于东海区海岸带1990-2015年6个时期遥感影像,分析其大陆岸线变迁,并评价其岸线利用强度。结果表明:(1)大陆岸线持续向海推进,且岸线长度缩减了495.91 km。岸线变迁强度呈现波动变化状态。岸线结构中大量自然岸线转变为人工岸线,自然岸线比例缩减了14.18%,而人工岸线占比上升了21.94%,岸线的多样性快速增长。(2)岸线平均分形维数呈现波动下降趋势,形态向平直、规则方向发展。海岸带海陆格局表现为陆进海退,陆地面积增加了2655.01 km<sup>2</sup>,海岸带受滩涂养殖、围填海、港口建设等人类活动影响显著。(3)岸线的开发利用强度加强。岸线人工化指数增加,2015年增长至53.88%。开发利用主体度由单一主体模式发展形成二元主体模式,至2015年,岸线二元主体转变为基岩岸线和建设岸线,主体度分别为30.53%和20.26%。岸线综合利用指数上升了32.42%,人类活动对岸线变化影响力大幅提高。
|
[6] |
夏涵韬, 隆院男, 刘诚, 等. 1973—2018年珠江三角洲海岸线时空演变分析[J]. 海洋学研究, 2020, 38(2):26-37.
|
[7] |
孙晓宇, 吕婷婷, 高义, 等. 2000—2010年渤海湾岸线变迁及驱动力分析[J]. 资源科学, 2014, 36(2):413-419.
|
[8] |
杨超, 张小芳, 张旸. 1995—2017年福建省海岸线时空变化分析[J]. 应用海洋学学报, 2021, 40(3):485-492.
|
[9] |
温馨燃, 王建国, 王雨婷, 等. 1985—2017年环渤海地区围填海演化及驱动力分析[J]. 水土保持通报, 2020, 40(2):85-91,99.
|
[10] |
苏倩欣, 李婧, 李志强, 等. 1980—2020年大湾区海岸线变迁及影响因素分析[J]. 热带海洋学报, 2022, 41(4):116-125.
海岸线动态变化是全球变化和人类活动共同的反映。本文基于粤港澳大湾区、东京湾和旧金山湾1980—2020年7期Landsat系列遥感影像及Google Earth高分辨率影像, 利用阈值分割, 结合水体指数法、Sobel算子法, 提取各期海岸线。从长度、空间形态、结构和利用程度等多角度分析其岸线变化, 并结合地理探测器对其影响因素进行定性和定量分析。结果显示: 1) 1980—2020年间, 各湾区岸线趋于平直, 其中东京湾海岸线的年均长度变化强度最大, 为0.37%; 2) 40a间各湾区岸线的纵深变化比较稳定, 结构趋于复杂, 形态趋于分散, 其中粤港澳大湾区海岸线的分维差异最小, 形态最分散; 3) 40a间, 各湾区的自然岸线减少, 港口码头岸线和其他人工岸线长度剧烈增长, 其中粤港澳大湾区的生物岸线波动增长, 岸线利用程度指数增幅最大。本文研究结果表明, 气温、波高、潮汐和陆域面积、港口吞吐量是湾区海岸线变化的主要影响因素, 且任意两个影响因素的交互作用大于单一因素的作用。
Coastline dynamic change is a common reflection of global change and human activities. Based on seven Landsat remote sensing images and Google Earth high-resolution images of the Guangdong-Hong Kong-Macao Greater Bay Area, Tokyo Bay and San Francisco Bay from 1980 to 2020, this paper used threshold segmentation combined with water index method and Sobel operator method to extract the coastline of each analysis period. In addition, this study also analyzed the changes of coastline in terms of length, spatial morphology, structure and utilization degree, and analyzed qualitatively and quantitatively the influencing factors with the help of geographic detectors. The results show that: (1) from 1980 to 2020, the intensity of annual average length change in the Tokyo Bay is the largest, which is 0.37%, and the coastline tends to be straight; (2) in the past 40 years, the depth of coastlines in all analyzed bay areas has remained stable, and the structures tend to be complex and the morphology tends to be dispersed. Among them, the difference of fractal dimension of coastlines in the Guangdong-Hong Kong-Macao Greater Bay Area is the smallest and the morphology is the most dispersed; (3) during the past 40 years, the natural coastline of each bay area decreased, while the length of port wharf coastline and other artificial coastline increased significantly, and the biological coastline of the Guangdong-Hong Kong-Macao Greater Bay Area fluctuated, and the coastline utilization index increased the most. The results show that temperature, wave height, tide, area and port throughput are the main factors that affect the coastline change, the interaction of any two factors is greater than the single factor. |
[11] |
王圳峰, 刘燕, 王欣珂, 等. 福建省绿色空间时空演变及驱动因素分析[J]. 广西师范大学学报:自然科学版, 2022, 40(4):227-246.
|
[12] |
李世锋, 洪增林, 薛旭平, 等. 基于Logistic-CA-Markov耦合模型的彬州市LUCC多情景模拟[J]. 水土保持研究, 2022, 29(4):292-299.
|
[13] |
孙贵芹, 徐艳东, 林蕾, 等. 基于遥感和GIS的烟台芝罘湾海岸线变迁研究[J]. 海洋科学进展, 2020, 38(1):140-152.
|
[14] |
刘思峰, 杨英杰. 灰色系统研究进展(2004—2014)[J]. 南京航空航天大学学报, 2015, 47(1):1-18.
|
[15] |
毋亭, 侯西勇. 海岸线变化研究综述[J]. 生态学报, 2016, 36(4):1170-1182.
|
[16] |
国家海洋局908专项办公室. 海岸带调查技术规程[M]. 北京: 海洋出版社, 2005.
908 Special Office of the State Oceanic Administration. Technical specification for coastal zone investigation[M]. Beijing: China Ocean Press, 2005.
|
[17] |
陈晓英, 张杰, 马毅. 近40年来海州湾海岸线时空变化分析[J]. 海洋科学进展, 2014, 32(3):324-334.
|
[18] |
叶梦姚, 李加林, 史小丽, 等. 1990—2015年浙江省大陆岸线变迁与开发利用空间格局变化[J]. 地理研究, 2017, 36(6):1159-1170.
分析海岸线变迁及开发利用空间格局变化对加强岸线资源管理,推动海岸带地区可持续发展具有重要意义。以1990-2015年6期的TM/OLI遥感影像为数据源,利用RS和GIS技术,分析浙江省大陆岸线变迁及开发利用空间格局变化。结果表明:① 浙江省大陆岸线变迁显著,岸线向海推进,总长度不断缩减,其中自然岸线长度缩减,人工岸线显著增加;② 岸线平均分形维数为1.0922,2000年之前较稳定,其后持续下降,2015年降至1.086;③ 浙江省大陆岸线人工化指数上升,最显著的变化是大量基岩岸线转变为港口码头岸线,其中杭州湾北岸区、象山港岸区和椒江口岸区人工化程度最高;④ 杭州湾南岸区、三门湾岸区及瓯江口—沙埕港岸区岸线开发利用始终为单一主体结构,而象山港岸区为二元结构类型,其余岸区的开发利用主体类型结构呈现出不同类型的演化趋势;⑤ 岸线开发强度不断上升,由0.25升高至0.38,其中象山港岸区开发强度最大,2015年达到了0.53。
Due to the intensive impacts of natural processes and anthropogenic activities, coastline changes have become one of the most important characteristics in coastal evolution. Detecting coastline changes and understanding the spatial patterns of human utilization are of great significance to provide knowledge for coastal resources management with sustainable development purposes. This study took six periods of remote sensing images from 1990 to 2015 as primary data sources for identifying coastlines, analyzing coastline changes, and recognizing the spatial patterns of the changes affected by human activities in Zhejiang Province. The results showed: (1) since 1990, the coastline changes in this province was significant; the total length of coastline, as well as the natural coastlines, was reduced; the coastlines constantly moved toward the sea and the artificial shorelines were significantly increased. (2) In the past 25 years, the whole coastline fractal dimension of Zhejiang is 1.0922; before 2000, the fractal dimension was relatively stable, then it showed a downward trend; in 2015, it reduced to 1.086. (3) During the last 25 years, the artificial index of Zhejiang's coastline has been rising; the transformation from the bedrock shoreline to port shoreline was the major changes; the artificial degree of the northern Hangzhou Bay, Xiangshan Harbor and Jiaojiang Port were the highest in the coastal areas. (4) during the study period, in 7 natural coastal areas of Zhejiang, the shoreline utilization structure of southern Hangzhou Bay, Sanmen Bay and Oujiang Estuary-Shacheng harbour maintained a single subject, the using type of Xiangshan Port District were dual structure, and the remaining areas showed different characteristics of evolution trend. (5) The shoreline development strength of Zhejiang presented a rising trend in the past 25 years; it rose from 0.25 in 1990 to 0.38 in 2015; the development and utilization of coastline strength of Xiangshan Harbor District is the largest among all harbors/bays; the strength index reached 0.53 in 2015. |
[19] |
高义, 苏奋振, 周成虎, 等. 基于分形的中国大陆海岸线尺度效应研究[J]. 地理学报, 2011, 66(3):331-339.
Based on DEM and remote sensing images, multi-scale coastlines of China mainland were extracted and the fractal characteristics of coastlines were analyzed. The results are shown as follows. (1) The coastline of China mainland fits the fractal model, and the fractal dimension is 1.195. (2) The scale effect with fractal dimensions of coastline has significant differences in light of uplift and subsidence segments along the coast of China mainland. (3) The fractal numbers of coastline dimension have significant spatial heterogeneity in the coastline types. The number of fractal dimension in sandy coastline located in the Luanhe River plain is 1.109, for the muddy coastline located in northern Jiangsu Plain, 1.059, and for rocky coastline along southeastern Fujian mountains, 1.293. (4) The length of rocky coastline is affected more by scale effect than that of muddy and sandy coastline. Since coastline is the conjunction of sea, land and atmosphere surface, the study of coastline scale effect is one of the scientific bases for the research on air-sea-land interaction in multi-scales.
|
[20] |
何改丽, 李加林, 刘永超, 等. 1985—2015年美国坦帕湾流域土地开发利用强度时空变化分析[J]. 自然资源学报, 2019, 34(1):66-79.
分析土地开发利用强度对提高土地开发利用效率和推动生态环境保护工作具有重要意义。选取美国佛罗里达州坦帕湾流域为研究区,以1985年、1995年、2005年、2015年4期Landsat TM/OLI遥感影像为数据源,采用GIS技术构建了基于行为者的土地动态度模型、转移矩阵、土地开发利用强度模型和土地利用结构模型,对坦帕湾流域土地开发利用强度时空格局进行了分析。结果表明:(1)研究期间建设用地和林地是流域主导土地利用类型;建设用地面积增加最多,主要由耕地转换而来,转换比例为53.74%。(2)各种土地利用类型相对变化率具有明显的空间差异,河流与湖泊相对变化最大;未利用地速度变化最为显著,单一动态度高达1.11%;建设用地年均增长较为平缓,每年增长0.30%左右;流域北部和南部综合动态度最高,形成极核中心,并以圈层形式向外辐射降低,同时高动态度区逐渐转换为较低动态度区。(3)信息熵均衡度呈小幅下降趋势,土地利用结构均质性下降;土地开发利用面积基本构成为建设用地>林地>耕地与牧场>河流与湖泊>未利用地>滩涂与沼泽。(4)坦帕湾沿岸皮拉尼斯县与坦帕市土地开发利用强度最高;流域土地开发利用强度发展期面积高于调整期,土地开发利用强度增强趋势明显。
|
[21] |
王越, 宋戈. 松嫩高平原土地利用格局变化时间尺度特征研究[J]. 自然资源学报, 2017, 32(10):1797-1807.
土地利用格局变化的时间尺度是其尺度依赖性和敏感性表达的重要基础。论文以松嫩高平原典型区域巴彦县为研究区,运用GIS、RS技术,结合Matlab编程,采用K-L变换将多波段的遥感影像提取为单波段图像作为原始信号数据,在研究区土地利用格局最优空间尺度下,应用快速傅里叶变换对小波分析模型进行改进,探寻研究区土地利用格局变化研究的适宜时间尺度,进而明确适宜时空尺度下土地利用格局变化的波动性特征,并采用土地利用转移矩阵对其时间尺度的划分结果进行检验。结果表明:1)研究区土地利用格局变化在10~20、30~40和40~50 a均有明显的波动性特征,表明10~20、30~40和40~50 a是研究区土地利用格局变化的3个重要时间尺度。2)1979—2015年研究区土地利用格局变化研究的最优时间分析尺度为36 a,土地利用格局在12.33 a左右具有明显的波动性变化特征,可将研究区时间域划分为3个发展阶段:发展初期1979—1991年、发展中期1991—2003年、发展近期2003—2015年。3)在空间上,研究区土地利用格局变化的全局化时间尺度和土地利用格局变化的局部化时间尺度具有较高水平的一致性。4)论文建立的基于小波分析的土地利用格局变化时间尺度识别方法可行并具有准确性,研究区旱地、林地和建设用地等主要土地利用类型在1979、1991、2003和2015年4个重要时间节点上的变化发生了明显的趋势性转换。
The scale dependency and sensitivity are important characteristics of land use pattern change. Taking Bayan County in Songnen High Plain as the empirical study area, the paper extracts single band image data as the original signal from multi-band image with K-L transformation. On the optimal spatial scale of the land use pattern in the study area, the wavelet analysis model was improved with fast Fourier transform to explore the appropriate time scale of land use pattern change in the study area. The model can automatically identify the land use pattern change and clarify the volatility characteristics of land use pattern change on appropriate time and space scales. Land use transfer matrix was used to test the results of time scale. The conclusions are as follows. Firstly, the land use pattern change showed volatility characteristics on time scales of 10-20 years, 30-40 years and 40-50 years. The volatility of land use pattern change on time scale of 40-50 years was the most intensive one, followed by the volatility on time scale of 30-40 years, and the volatility on time scale of 10-20 years was the least. Secondly, the optimal time scale for analysis of land use pattern change is 36 years in the study area during 1979-2015. Land use pattern has obviously volatility characteristics around 12.33 years. The study area can be divided into three development stages: the early stage is from 1979 to 1991, the medium stage is from 1991 to 2003, and the recent stage is from 2003 to 2015. Thirdly, the global time scale and the local time scale of land use pattern change were highly consistent in the study area. Finally, the main land use types, such as dry land, woodland and construction land, underwent obvious trend of conversion in the years of 1979, 1991, 2003 and 2015.
|
[22] |
刘纪远, 宁佳, 匡文慧, 等. 2010—2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5):789-802.
土地利用/覆被变化是人类活动对地球表层及全球变化影响研究的重要内容。本文基于Landsat 8 OLI、GF-2等遥感图像和人机交互解译方法,获取的土地利用数据实现了中国2010-2015年土地利用变化遥感动态监测。应用土地利用动态度、年变化率等指标,从全国和分区角度揭示了2010-2015年中国土地利用变化的时空特征。结果表明:2010-2015年中国建设用地面积共增加24.6×10<sup>3</sup> km<sup>2</sup>,耕地面积共减少4.9×10<sup>3</sup> km<sup>2</sup>,林草用地面积共减少16.4×10<sup>3</sup> km<sup>2</sup>。2010-2015年与2000-2010年相比,中国土地利用变化的区域空间格局基本一致,但分区变化呈现新的特征。东部建设用地持续扩张和耕地面积减少,变化速率有所下降;中部建设用地扩张和耕地面积减少速度增加;西部建设用地扩张明显加速,耕地面积增速进一步加快,林草面积减少速率增加;东北地区建设用地扩展持续缓慢,耕地面积稳中有升,水旱田转换突出,林草面积略有下降。从“十二五”期间国家实施的主体功能区布局来看,东部地区的土地利用变化特征与优化和重点开发区的国土空间格局管控要求基本吻合;中部和西部地区则面临对重点生态功能区和农产品主产区相关土地利用类型实现有效保护的严峻挑战,必须进一步加大对国土空间开发格局的有效管控。
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environment change. National land-use changes of China during 2010-2015 were acquired by the digital interpretation method using high-resolution remotely sensed images, i.e. the Landsat8 OLI, and GF-2 remote sensing images. The spatio-temporal characteristics of land-use changes across China during 2010-2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio, etc. The results indicated that built-up land increased by 24.6×103 km2, while cropland decreased by 4.9×103 km2, and the total area of woodland and grassland decreased by 16.4×103 km2. The spatial pattern of land-use changes in China during 2010-2015 was concordant with that of the period 2000-2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010-2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed down continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial governance and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12th Five-Year Plan (2011-2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in central and western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future. |
[23] |
庄大方, 刘纪远. 中国土地利用程度的区域分异模型研究[J]. 自然资源学报, 1997, 12(2):105-111.
|
[24] |
李加林, 姜忆湄, 冯佰香, 等. 海湾开发利用强度分析——以宁波市杭州湾、象山港与宁波市三门湾为例[J]. 应用海洋学学报, 2018, 37(4):541-550.
|
[25] |
刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8):2041-2046.
本文对灰色关联分析模型的研究进展进行了系统梳理. 从早期基于点关联系数的灰色关联分析模型, 到基于整体或全局视角的广义灰色关联分析模型; 从基于接近性测度相似性的灰色关联分析模型, 到分别基于相似性和接近性视角构造的灰色关联分析模型; 研究对象从曲线之间的关系分析到曲面之间的关系分析, 再到三维空间立体乃至n维空间中超曲面之间的关系分析. 明确了有待进一步研究的问题. 较为清晰地向读者展示出灰色关联分析模型的几条研究脉络.
|
[26] |
张家豪, 何倩倩, 韩鑫. 粤东南澳海域海床演变分析[J]. 中国水运, 2020, 20(9):146-148.
|
[27] |
章志, 陈鹏, 冒士凤, 等. 20年间盐城海岸线变迁及影响因素分析[J]. 海洋湖沼通报, 2022, 44(2):136-142.
利用Landsat影像提取了盐城1997年到2017年的海岸线,采用基线法对海岸线变迁进行了定量分析。结果表明:1997—2017年的20年间,盐城海岸线长度变化不大,人工岸线比例逐渐升高;向陆后退岸段位于灌河口到射阳河口之间,以废黄河口为中心,平均变化率分别为-0.46 m/a;向海推进岸段分布于射阳河口和北凌河口之间,平均变化率为140.6 m/a,每5年平均变化率为305.16 m/a、160.79 m/a、121.02 m/a和102.86 m/a,海岸向海前进的速度在减缓,前进幅度在逐年减小。海岸南北冲淤拐点向南扩展至射阳盐场附近。农业围垦、养殖围垦、港口和海岸防护工程建设是盐城海岸线变迁的主要原因。
Landsat imagesare used to extract the coastline of Yancheng from 1997 to 2017, and the baseline method is used to quantitatively analyze the changes of the coastline. The results show that during the 20 years from 1997 to 2017, the length of the Yancheng coastline has not changed much, but the proportion of artificial shorelines has increased gradually. The eroded coastline is located between Guanhe estuary and Sheyang estuary, with the abandoned Yellow River estuary as the center. The average changes of the coastline is -0.46 m/a. The silt coastline is distributed between the Sheyang and Beiling estuaries,with an average change rate of 140.6 m/a over 20 years, and with a change rate of 305.16 m/a, 160.79 m/a, 121.02 m/a, and 102.86 m/a every 5 years. Coastal silting is slowing down, and the extent of coastline advancement to the sea is decreasing year by year. The north-south erosion and inflection point extend southward to the vicinity of the Sheyang salt field. Agricultural reclamation, breeding reclamation, port and coastal protection engineering construction are the main reasons for the changes of the coastline of Yancheng.
|
[28] |
浦庆, 张雪, 李时岭, 等. 滨海县海堤滩面侵蚀原因分析及保滩工程设计[J]. 水利技术监督, 2023, 31(4):247-251.
|
[29] |
汪义杰, 李丽, 何颖清, 等. 1986—2021年粤港澳大湾区自然岸线时空变迁及保护对策[J]. 中国水利, 2023(7):49-53.
|
[30] |
李亮, 伍晓洪. 南澳岛海岸线边坡生态修复工程实例分析——基于汕头市南澳岛蓝色海湾整治行动项目[J]. 中国资源综合利用, 2021, 39(10):60-65.
|
/
〈 |
|
〉 |