海洋学研究 ›› 2023, Vol. 41 ›› Issue (4): 70-83.DOI: 10.3969/j.issn.1001-909X.2023.04.007
章志1(), 刘宪光2, 周凯1, 林伟波1, 冒士凤1, 李兰满1
收稿日期:
2023-05-08
修回日期:
2023-07-31
出版日期:
2023-12-15
发布日期:
2024-01-30
作者简介:
章志(1985—),男,安徽省铜陵市人,高级工程师,主要从事海岸带开发保护研究,E-mail:izzchina@163.com。
基金资助:
ZHANG Zhi1(), LIU Xianguang2, ZHOU Kai1, LIN Weibo1, MAO Shifeng1, LI Lanman1
Received:
2023-05-08
Revised:
2023-07-31
Online:
2023-12-15
Published:
2024-01-30
摘要:
海岸侵蚀导致土地流失,严重威胁人民生命财产安全,识别海岸侵蚀脆弱性对于防灾减灾意义重大。从海岸动力、海岸形态和社会经济三个方面构建评价指标体系,利用数字化海岸线分析系统(digital shoreline analysis system,DSAS)和遥感数据,采用断面法将海岸离散为等间距的评价单元,基于熵权法确定评价指标权重、等级并计算海岸侵蚀脆弱性,利用地理探测器识别海岸侵蚀脆弱性的空间分异和影响因素。结果表明:江苏中部海岸侵蚀脆弱性为极高脆弱、高脆弱、中脆弱、低脆弱和极低脆弱的比例分别为5.60%、15.80%、30.93%、24.21%和23.46%,海岸侵蚀脆弱性总体呈现北高南低的分布趋势,其中为极脆弱的区域主要位于中山河口—射阳河口之间的海岸区域。江苏中部海岸侵蚀脆弱性的空间分异是海岸动力、海岸形态、社会经济多重因素协同作用的结果,其中潮滩坡度、地表覆盖类型、平均潮差、海岸线变化速率是海岸侵蚀脆弱性空间分异的主导因子。
中图分类号:
章志, 刘宪光, 周凯, 林伟波, 冒士凤, 李兰满. 海岸侵蚀脆弱性及驱动因子分析——以江苏中部海岸为例[J]. 海洋学研究, 2023, 41(4): 70-83.
ZHANG Zhi, LIU Xianguang, ZHOU Kai, LIN Weibo, MAO Shifeng, LI Lanman. Vulnerability and driving factors of coastal erosion: A case study of the central coast of Jiangsu[J]. Journal of Marine Sciences, 2023, 41(4): 70-83.
指标 类型 | 指标 | 指标 编号 | 权重 | 指标等级 | ||||
---|---|---|---|---|---|---|---|---|
极高脆弱 | 高脆弱 | 中脆弱 | 低脆弱 | 极低脆弱 | ||||
海岸 动力 | 平均潮差/mm | C1 | 0.063 | [0.00,274.87] | (274.87~282.98] | (282.98~310.32] | (310.32~475.52] | (475.52~549.27] |
平均有效波高/m | C2 | 0.061 | (0.53,0.55] | (0.50,0.53] | (0.45,0.50] | (0.38,0.45] | [0.33,0.38] | |
海水含沙量/(g·L-1) | C3 | 0.010 | [0.20,0.22] | (0.22,0.23] | (0.23,0.26] | (0.26,0.33] | (0.33,0.38] | |
海岸 形态 | 海岸高程/m | C4 | 0.065 | [0.00~2.00] | (2.00~6.00] | (6.00~10.00] | (10.00~14.00] | (14.00~22.00] |
海岸线变化速率/(m·a-1) | C5 | 0.036 | [-86.56,0.00] | (0.00,137.00] | (137.00,253.94] | (253.94,344.45] | (344.45,539.33] | |
等深线变化速率/(m·a-1) | C6 | 0.006 | [-169.40, -93.43] | (-93.43, -24.77] | (-24.77, 23.08] | (23.08,111.60] | (111.60,294.70] | |
潮滩坡度/% | C7 | 0.334 | [0.00,1.00] | (1.00~3.00] | (3.00~12.00] | (12.00~35.00] | (35.00~100.00] | |
潮滩宽度/km | C8 | 0.051 | [0.00,3.35] | (3.35,5.85] | (5.85,10.60] | (10.60,19.37] | (19.37,33.63] | |
社会 经济 | 人口密度/(人·km-2) | C9 | 0.223 | (896.75,2 130.39] | (518.31,896.75] | (257.88,518.31] | (93.04,257.88] | [0.00,93.04] |
地表覆盖类型 | C10 | 0.058 | 人造地表 | 耕地 | 裸地 | 草地、灌木地 | 湿地、水体 | |
GDP/(万元·km-2) | C11 | 0.028 | (3 629.00, 9 194.00] | (2 832.00, 3 629.00] | (2 245.00, 2 832.00] | (1 668.00, 2 245.00] | [1 254.00, 1 668.00] | |
人均GDP/万元 | C12 | 0.040 | [0.00,5.34] | (5.34,6.55] | (6.55,7.44] | (7.44,9.69] | (9.69,10.64] | |
一般公共预算支出/亿元 | C13 | 0.025 | [0.00,64.47] | (64.47,81.30] | (81.30,91.68] | (91.68,96.07] | (96.07,108.70] |
表1 海岸侵蚀脆弱性评价指标权重及等级
Tab.1 Weights and grades of coastal erosion vulnerability assessment indicators
指标 类型 | 指标 | 指标 编号 | 权重 | 指标等级 | ||||
---|---|---|---|---|---|---|---|---|
极高脆弱 | 高脆弱 | 中脆弱 | 低脆弱 | 极低脆弱 | ||||
海岸 动力 | 平均潮差/mm | C1 | 0.063 | [0.00,274.87] | (274.87~282.98] | (282.98~310.32] | (310.32~475.52] | (475.52~549.27] |
平均有效波高/m | C2 | 0.061 | (0.53,0.55] | (0.50,0.53] | (0.45,0.50] | (0.38,0.45] | [0.33,0.38] | |
海水含沙量/(g·L-1) | C3 | 0.010 | [0.20,0.22] | (0.22,0.23] | (0.23,0.26] | (0.26,0.33] | (0.33,0.38] | |
海岸 形态 | 海岸高程/m | C4 | 0.065 | [0.00~2.00] | (2.00~6.00] | (6.00~10.00] | (10.00~14.00] | (14.00~22.00] |
海岸线变化速率/(m·a-1) | C5 | 0.036 | [-86.56,0.00] | (0.00,137.00] | (137.00,253.94] | (253.94,344.45] | (344.45,539.33] | |
等深线变化速率/(m·a-1) | C6 | 0.006 | [-169.40, -93.43] | (-93.43, -24.77] | (-24.77, 23.08] | (23.08,111.60] | (111.60,294.70] | |
潮滩坡度/% | C7 | 0.334 | [0.00,1.00] | (1.00~3.00] | (3.00~12.00] | (12.00~35.00] | (35.00~100.00] | |
潮滩宽度/km | C8 | 0.051 | [0.00,3.35] | (3.35,5.85] | (5.85,10.60] | (10.60,19.37] | (19.37,33.63] | |
社会 经济 | 人口密度/(人·km-2) | C9 | 0.223 | (896.75,2 130.39] | (518.31,896.75] | (257.88,518.31] | (93.04,257.88] | [0.00,93.04] |
地表覆盖类型 | C10 | 0.058 | 人造地表 | 耕地 | 裸地 | 草地、灌木地 | 湿地、水体 | |
GDP/(万元·km-2) | C11 | 0.028 | (3 629.00, 9 194.00] | (2 832.00, 3 629.00] | (2 245.00, 2 832.00] | (1 668.00, 2 245.00] | [1 254.00, 1 668.00] | |
人均GDP/万元 | C12 | 0.040 | [0.00,5.34] | (5.34,6.55] | (6.55,7.44] | (7.44,9.69] | (9.69,10.64] | |
一般公共预算支出/亿元 | C13 | 0.025 | [0.00,64.47] | (64.47,81.30] | (81.30,91.68] | (91.68,96.07] | (96.07,108.70] |
序号 | 岸段 | 验潮站 | 平均高潮位/cm | 平均低潮位/cm | 平均潮差/cm |
---|---|---|---|---|---|
1 | 灌河口—中山河口 | 燕尾 | 445.71 | 107.13 | 338.58 |
2 | 中山河口—扁担港 | 滨海港 | 282.98 | 51.16 | 231.82 |
3 | 扁担港—射阳河口 | 射阳河口 | 274.87 | 51.94 | 222.93 |
4 | 射阳河口—新洋港 | 新洋港 | 310.31 | 98.55 | 211.76 |
5 | 新洋港—斗龙港 | 新洋港 | 310.31 | 98.55 | 211.76 |
6 | 斗龙港—川东港 | 大丰港 | 475.52 | 89.35 | 386.17 |
7 | 川东港—方塘河口南侧 | 弶港 | 549.27 | 104.89 | 444.38 |
表2 2020年江苏中部海洋潮位数据
Tab.2 Marine tide data of central Jiangsu in 2020
序号 | 岸段 | 验潮站 | 平均高潮位/cm | 平均低潮位/cm | 平均潮差/cm |
---|---|---|---|---|---|
1 | 灌河口—中山河口 | 燕尾 | 445.71 | 107.13 | 338.58 |
2 | 中山河口—扁担港 | 滨海港 | 282.98 | 51.16 | 231.82 |
3 | 扁担港—射阳河口 | 射阳河口 | 274.87 | 51.94 | 222.93 |
4 | 射阳河口—新洋港 | 新洋港 | 310.31 | 98.55 | 211.76 |
5 | 新洋港—斗龙港 | 新洋港 | 310.31 | 98.55 | 211.76 |
6 | 斗龙港—川东港 | 大丰港 | 475.52 | 89.35 | 386.17 |
7 | 川东港—方塘河口南侧 | 弶港 | 549.27 | 104.89 | 444.38 |
成像时间 | 行号 | 列号 | 传感器 | 分辨率/m | 备注 |
---|---|---|---|---|---|
1997-06-05 T 09:59 | 119 | 37 | TM | 30 | 计算海岸线变化速率 |
1997-10-18 T 10:09 | 120 | 36 | TM | 30 | 计算海岸线变化速率 |
2017-03-08 T 10:30 | 119 | 37 | OLI_TIRS | 30 | 计算海岸线变化速率 |
2017-08-06 T 10:36 | 120 | 36 | OLI_TIRS | 30 | 计算海岸线变化速率 |
2021-02-26 T 10:36 | 120 | 36 | OLI_TIRS | 30 | 计算潮滩坡度 |
2021-03-03 T 10:31 | 119 | 37 | OLI_TIRS | 30 | 计算潮滩坡度 |
2021-03-26 T 10:36 | 120 | 36 | OLI_TIRS | 30 | 计算潮滩坡度 |
2021-11-14 T 10:31 | 119 | 37 | OLI_TIRS | 30 | 计算潮滩坡度 |
表3 遥感数据来源及具体参数
Tab.3 Data source and specific parameters of remote sensing images
成像时间 | 行号 | 列号 | 传感器 | 分辨率/m | 备注 |
---|---|---|---|---|---|
1997-06-05 T 09:59 | 119 | 37 | TM | 30 | 计算海岸线变化速率 |
1997-10-18 T 10:09 | 120 | 36 | TM | 30 | 计算海岸线变化速率 |
2017-03-08 T 10:30 | 119 | 37 | OLI_TIRS | 30 | 计算海岸线变化速率 |
2017-08-06 T 10:36 | 120 | 36 | OLI_TIRS | 30 | 计算海岸线变化速率 |
2021-02-26 T 10:36 | 120 | 36 | OLI_TIRS | 30 | 计算潮滩坡度 |
2021-03-03 T 10:31 | 119 | 37 | OLI_TIRS | 30 | 计算潮滩坡度 |
2021-03-26 T 10:36 | 120 | 36 | OLI_TIRS | 30 | 计算潮滩坡度 |
2021-11-14 T 10:31 | 119 | 37 | OLI_TIRS | 30 | 计算潮滩坡度 |
图2 海岸侵蚀脆弱性分布 I—海岸侵蚀脆弱性指数;C1—平均潮差;C2—平均有效波高;C3—海水含沙量;C4—海岸高程;C5—海岸线变化速率;C6—等深线变化速率;C7—潮滩坡度;C8—潮滩宽度;C9—人口密度;C10—地表覆盖类型;C11—GDP;C12—人均GDP;C13—一般公共预算支出
Fig.2 Distribution map of coastal erosion vulnerability
指标 | 编号 | q值 | p值 |
---|---|---|---|
平均潮差 | C1 | 0.37 | 0.00 |
平均有效波高 | C2 | 0.21 | 0.00 |
海水含沙量 | C3 | 0.28 | 0.00 |
海岸高程 | C4 | 0.12 | 0.00 |
海岸线变化速率 | C5 | 0.31 | 0.00 |
等深线变化速率 | C6 | 0.30 | 0.00 |
潮滩坡度 | C8 | 0.47 | 0.00 |
潮滩宽度 | C7 | 0.23 | 0.00 |
人口密度 | C9 | 0.22 | 0.00 |
地表覆盖类型 | C10 | 0.39 | 0.00 |
GDP | C11 | 0.27 | 0.00 |
人均GDP | C12 | 0.13 | 0.00 |
一般公共预算支出 | C13 | 0.11 | 0.00 |
表4 海岸侵蚀脆弱性影响因子的q值
Tab.4 The q value of influencing factor of coastal erosion vulnerability
指标 | 编号 | q值 | p值 |
---|---|---|---|
平均潮差 | C1 | 0.37 | 0.00 |
平均有效波高 | C2 | 0.21 | 0.00 |
海水含沙量 | C3 | 0.28 | 0.00 |
海岸高程 | C4 | 0.12 | 0.00 |
海岸线变化速率 | C5 | 0.31 | 0.00 |
等深线变化速率 | C6 | 0.30 | 0.00 |
潮滩坡度 | C8 | 0.47 | 0.00 |
潮滩宽度 | C7 | 0.23 | 0.00 |
人口密度 | C9 | 0.22 | 0.00 |
地表覆盖类型 | C10 | 0.39 | 0.00 |
GDP | C11 | 0.27 | 0.00 |
人均GDP | C12 | 0.13 | 0.00 |
一般公共预算支出 | C13 | 0.11 | 0.00 |
[1] | GORNITZ V. Vulnerability of the East Coast, USA to future sea level rise[J]. Journal of Coastal Research, 1990, 9: 201-237. |
[2] | 刘曦, 沈芳. 长江三角洲海岸侵蚀脆弱性模糊综合评价[J]. 长江流域资源与环境, 2010, 19(S1):196-200. |
LIU X, SHEN F. Fuzzy comprehensive assessment on the Yangtze River Delta coastal erosion vulnerability[J]. Resources and Environment in the Yangtze Basin, 2010, 19(S1): 196-200. | |
[3] | 文世勇, 王紫竹, 王涛, 等. 基于遥感技术的海南省海岸侵蚀现状与趋势评估[J]. 灾害学, 2020, 35(1):138-143. |
WEN S Y, WANG Z Z, WANG T, et al. Status and trend assessment of coastal erosion at Hainan Province based on remote sensing technology[J]. Journal of Catastrophology, 2020, 35(1): 138-143. | |
[4] |
GORNITZ V. Global coastal hazards from future sea level rise[J]. Global and Planetary Change, 1991, 3(4): 379-398.
DOI URL |
[5] |
BORUFF B J, EMRICH C, CUTTER S L. Erosion hazard vulnerability of US coastal counties[J]. Journal of Coastal Research, 2005, 215: 932-942.
DOI URL |
[6] | KUNTE P D, JAUHARI N, MEHROTRA U, et al. Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques[J]. Ocean & Coastal Management, 2014, 95: 264-281. |
[7] | KUMAR T S, MAHENDRA R S, NAYAK S, et al. Coastal vulnerability assessment for Orissa State, East Coast of India[J]. Journal of Coastal Research, 2010, 26(3): 523-534. |
[8] |
JANA A, BHATTACHARYA A K. Assessment of coastal erosion vulnerability around Midnapur-Balasore Coast, Eastern India using integrated remote sensing and GIS techniques[J]. Journal of the Indian Society of Remote Sensing, 2013, 41(3): 675-686.
DOI URL |
[9] |
SZLAFSZTEIN C, STERR H. A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil[J]. Journal of Coastal Conservation, 2007, 11(1): 53-66.
DOI URL |
[10] |
YIN J, YIN Z E, WANG J, et al. National assessment of coastal vulnerability to sea-level rise for the Chinese coast[J]. Journal of Coastal Conservation, 2012, 16(1): 123-133.
DOI URL |
[11] | 刘小喜, 陈沈良, 蒋超, 等. 苏北废黄河三角洲海岸侵蚀脆弱性评估[J]. 地理学报, 2014, 69(5):607-618. |
LIU X X, CHEN S L, JIANG C, et al. Vulnerability assessment of coastal erosion along the Abandoned Yellow River Delta of northern Jiangsu, China[J]. Acta Geographica Sinica, 2014, 69(5): 607-618.
DOI |
|
[12] | 李恒鹏, 杨桂山. 长江三角洲与苏北海岸动态类型划分及侵蚀危险度研究[J]. 自然灾害学报, 2001, 10(4):20-25. |
LI H P, YANG G S. Determination of classification and risk in the coastal zone of Yangtze Delta and North Jiangsu[J]. Journal of Natural Disasters, 2001, 10(4): 20-25. | |
[13] | 王奎博, 张丽, 王瑞琪, 等. 海南岛海岸侵蚀脆弱性评价[J]. 遥感技术与应用, 2022, 37(5):1149-1158. |
WANG K B, ZHANG L, WANG R Q, et al. Evaluation of coastal erosion vulnerability in Hainan Island[J]. Remote Sensing Technology and Application, 2022, 37(5): 1149-1158. | |
[14] |
ABUODHA P A O, WOODROFFE C D. Assessing vulnerability to sea-level rise using a coastal sensitivity index: A case study from southeast Australia[J]. Journal of Coastal Conservation, 2010, 14(3): 189-205.
DOI URL |
[15] |
ZAMPAZAS G, KARYMBALIS E, CHALKIAS C. Assessment of the sensitivity of Zakynthos Island (Ionian Sea, Western Greece) to climate change-induced coastal hazards[J]. Zeitschrift Für Geomorphologie, 2022, 63(2/3): 183-200.
DOI URL |
[16] |
王远东, 侯西勇, 施平, 等. 海平面上升背景下环渤海海岸敏感性研究[J]. 地理科学, 2013, 33(12):1514-1523.
DOI |
WANG Y D, HOU X Y, SHI P, et al. Sensitivity analysis along the Bohai coast under the background of sea level rise[J]. Scientia Geographica Sinica, 2013, 33(12): 1514-1523. | |
[17] | 徐伟, 彭修强, 贾培宏, 等. 苏北废黄河三角洲海岸线历史时空演化研究[J]. 南京大学学报:自然科学, 2014, 50(5):576-584. |
XU W, PENG X Q, JIA P H, et al. Spatial-temporal coastline evolution of the old Yellow River delta, northern Jiangsu Province[J]. Journal of Nanjing University: Natural Sciences, 2014, 50(5): 576-584. | |
[18] |
张忍顺. 苏北黄河三角洲及滨海平原的成陆过程[J]. 地理学报, 1984, 39(2):173-184.
DOI |
ZHANG R S. Land-forming history of the Huanghe River delta and coastal plain of North Jiangsu[J]. Acta Geographica Sinica, 1984, 39(2): 173-184. | |
[19] | 高抒. 废黄河口海岸侵蚀与对策[J]. 海岸工程, 1989, 8(1):37-42. |
GAO S. Erosion of old Yellow River Delta in northern Jiangsu and coast protection[J]. Coastal Engineering, 1989, 8(1): 37-42. | |
[20] | 王艳红. 废黄河三角洲海岸侵蚀过程中的变异特征及整体防护研究[D]. 南京: 南京师范大学, 2006. |
WANG Y H. Study of variation features during coastal erosion processes on the abandoned Huanghe River delta and integrated protection measures[D]. Nanjing: Nanjing Normal University, 2006. | |
[21] | 张忍顺, 陆丽云, 王艳红. 江苏海岸侵蚀过程及其趋势[J]. 地理研究, 2002, 21(4):469-478. |
ZHANG R S, LU L Y, WANG Y H. The mechanism and trend of coastal erosion of Jiangsu Province in China[J]. Geographical Research, 2002, 21(4): 469-478.
DOI |
|
[22] | HIMMELSTOSS E A, HENDERSON R E, KRATZMANN M G, et al. Digital shoreline analysis system (DSAS) version 5.1 user guide[R]. US Geological Survey, 2021. https://doi.org/10.3133/ofr20211091. |
[23] | 王艳红, 温永宁, 王建, 等. 海岸滩涂围垦的适宜速度研究——以江苏淤泥质海岸为例[J]. 海洋通报, 2006, 25(2):15-20. |
WANG Y H, WEN Y N, WANG J, et al. Feasible rate of tidal flat reclamation—Jiangsu mud coast as a case study[J]. Marine Science Bulletin, 2006, 25(2): 15-20. | |
[24] | 任美锷. 江苏海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社,1986. |
REN M E. Report of comprehensive survey of coastal zone and tideland resources in Jiangsu Province[M]. Beijing: China Ocean Press, 1986. | |
[25] | ISLAM M A, MITRA D, DEWAN A, et al. Coastal multi-hazard vulnerability assessment along the Ganges deltaic coast of Bangladesh—A geospatial approach[J]. Ocean & Coastal Management, 2016, 127: 1-15. |
[26] |
NAGESWARA R K, SUBRAELU P, VENKATESWARA R T, et al. Sea-level rise and coastal vulnerability: An assessment of Andhra Pradesh coast, India through remote sensing and GIS[J]. Journal of Coastal Conservation, 2008, 12(4): 195-207.
DOI URL |
[27] |
BAGDANAVIČIŪTĖ I, KELPŠAITĖ L, SOOMERE T. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas[J]. Ocean and Coastal Management, 2015, 104: 124-135.
DOI URL |
[28] | 罗时龙. 海岸侵蚀风险评价模型构建及其应用研究[D]. 青岛: 中国海洋大学, 2014. |
LUO S L. Study on risk assessment modeling of coastal erosion and its application[D]. Qingdao: Ocean University of China, 2014. | |
[29] | 戚洪帅, 蔡锋, 苏贤泽, 等. 热带风暴作用下海滩地貌过程模式初探以0604号热带风暴“碧利斯”对半月湾海滩的作用为例[J]. 海洋学报, 2009, 31(1):168-176. |
QI H S, CAI F, SU X Z, et al. Study on geomorphologic process of beaches under tropical storm action Taking the effect of No.0604 tropical storm Bylis on Banyue Bay beach in Fujian Province, China as an example[J]. Acta Oceano-logica Sinica, 2009, 31(1): 168-176. | |
[30] |
MAHMOOD R, AHMED N, ZHANG L, et al. Coastal vulnerability assessment of Meghna Estuary of Bangladesh using integrated geospatial techniques[J]. International Journal of Disaster Risk Reduction, 2020, 42: 101374.
DOI URL |
[31] | 朱正涛. 海岸侵蚀脆弱性评估模型构建及其应用研究[D]. 上海: 华东师范大学, 2019. |
ZHU Z T. Study on assessment modeling of coastal vulnerability to erosion and its application[D]. Shanghai: East China Normal University, 2019. | |
[32] | 盐城市人民政府. 盐城年鉴[M]. 北京: 方志出版社, 2019. |
Yancheng Municipal People's Government. Yancheng Year-book[M]. Beijing: Fangzhi Publishing House, 2019. | |
[33] | 曹斯明, 吴怡, 曹凯, 等. 基于熵权和层次分析法的综合能源系统运行服务评价[J]. 科技通报, 2021, 37(12):56-60. |
CAO S M, WU Y, CAO K, et al. Service evaluation of the integrated energy system based on EMW and AHP[J]. Bulletin of Science and Technology, 2021, 37(12): 56-60. | |
[34] |
DIEZ P G, PERILLO G M E, PICCOLO M C. Vulnerability to sea-level rise on the coast of the Buenos Aires Province[J]. Journal of Coastal Research, 2007, 231: 119-126.
DOI URL |
[35] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
DOI |
WANG J F, XU C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
DOI |
|
[36] |
SHRESTHA A, LUO W. Analysis of groundwater nitrate contamination in the central valley: Comparison of the geodetector method, principal component analysis and geographically weighted regression[J]. ISPRS International Journal of Geo-Information, 2017, 6(10): 297.
DOI URL |
[1] | 张云, 张笑, 龚艳君, 刘明. 海岛生态系统脆弱性影响机制与评价理论体系初探——以辽宁省海岛为例[J]. 海洋学研究, 2019, 37(4): 68-78. |
[2] | 张健, 李佳芮, 刘书明, 刘捷, 杨翼. 象山港生态系统脆弱性及其评价体系构建[J]. 海洋学研究, 2017, 35(2): 74-81. |
[3] | 李源, 时连强, 童宵岭, 廖甜. 近50 a来秀山岛岸线时空变化规律及其原因浅析[J]. 海洋学研究, 2016, 34(4): 46-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||