复杂地质背景下大陆坡脚点的确定方法:以莫桑比克南部陆缘为例

庄宝江, 唐勇, 吕孝辉, 杨春国, 吴招才, 李赫

海洋学研究 ›› 2024, Vol. 42 ›› Issue (1) : 13-22.

PDF(6192 KB)
PDF(6192 KB)
海洋学研究 ›› 2024, Vol. 42 ›› Issue (1) : 13-22. DOI: 10.3969/j.issn.1001-909X.2024.01.002
研究论文

复杂地质背景下大陆坡脚点的确定方法:以莫桑比克南部陆缘为例

作者信息 +

Method for determining the foot point of continental slope in complex geological background: Take the southern continental margin of Mozambique as an example

Author information +
文章历史 +

摘要

针对复杂地质背景下的大陆架划界问题,提出了一种新的大陆坡脚点(foot point of the continental slope,FOS)确定方法。该方法基于水深平均梯度变化计算坡脚点所在位置,并结合相反证明以及凸包性、分段性、连续性原则进行优化。以莫桑比克南部陆缘为研究区域,利用2021年实测的高精度多波束地形数据,应用该方法提取了大陆架划界最关键的依据——FOS,并与联合国大陆架界限委员会使用的Geocap软件提取的结果进行对比,确认了相同的FOS位置,证明该方法是准确有效的。

Abstract

A new method for determining the foot point of the continental slope (FOS) was proposed for the delineation of the continental shelf in a complex geological context. This method calculated the location of the foot of slope based on the mean gradient of water depth and optimized it by combining the contrary evidence and the principles of convexity, segmentation and continuity. Using the southern continental margin of Mozambique as the study area, the method was applied to extract the most critical basis—FOS for continental shelf delineation using high-precision multibeam topographic data measured in 2021, and the result was confirmed by comparison with those extracted by the Geocap software which is used by the United Nations Commission on the Limits of the Continental shelf, proving the effectiveness and accuracy of this method.

关键词

大陆架划界 / 大陆坡脚点 / 平均梯度变化 / 莫桑比克南部陆缘

Key words

delimitation of continental shelf / foot point of slope / average gradient changes / southern continental margin of Mozambique

引用本文

导出引用
庄宝江, 唐勇, 吕孝辉, . 复杂地质背景下大陆坡脚点的确定方法:以莫桑比克南部陆缘为例[J]. 海洋学研究. 2024, 42(1): 13-22 https://doi.org/10.3969/j.issn.1001-909X.2024.01.002
ZHUANG Baojiang, TANG Yong, LÜ Xiaohui, et al. Method for determining the foot point of continental slope in complex geological background: Take the southern continental margin of Mozambique as an example[J]. Journal of Marine Sciences. 2024, 42(1): 13-22 https://doi.org/10.3969/j.issn.1001-909X.2024.01.002
中图分类号: P229.6   

参考文献

[1]
联合国海洋法公约(汉英)[M]. 北京: 海洋出版社, 1996.
United Nations Convention on the Law of the Sea (Chinese-English )[M]. Beijing: China Ocean Press, 1996.
[2]
COOK P J, CARLETON C. Continental shelf limits: The scientific and legal interface[M]. New York: Oxford University Press, 2000: 743-744.
[3]
方银霞, 尹洁. 大陆架界限委员会的工作进展及全球外大陆架划界新形势[J]. 国际法研究, 2020(6):61-69.
FANG Y X, YIN J. Progress of work in the commission on the limits of the continental shelf and hot issues on the extended continental shelf delineation worldwide[J]. Chinese Review of International Law, 2020(6): 61-69.
[4]
SINHA S T, SAHA S, LONGACRE M, et al. Crustalarchi-tecture and nature of continental breakup along a transform margin: New insights from tanzania-mozambique margin[J]. Tectonics, 2019, 38(4): 1273-1291.
[5]
方银霞, 李家彪, 尹洁, 等. 大陆坡脚确定原则与方法[J]. 海洋学研究, 2022, 40(2):1-9.
FANG Y X, LI J B, YIN J, et al. Principles and methods for determining the foot of the continental slope[J]. Journal of Marine Sciences, 2022, 40(2): 1-9.
<p> The foot of the continental slope is an important topographical feature of the continental margin. Its the basis for coastal states to extend its continental shelf rights and to delimit the outer limit of the continental shelf beyond 200 nautical miles. Its also an important technical parameter that the Commission on the Limits of the Continental Shelf pays special attention to when considering the submissions of coastal states. The formulation of the continental shelf regime in Article 76 of the United Nations Convention on the Law of the Sea originates from the typical passive continental margin. However, due to the diversity and complexity of the global continental margin, especially the transformation and influence of late tectonic activities and sedimentation on the continental margin, the seabed topography is extremely complex and changeable, which makes it very difficult to identify the foot of the continental slope. In addition, in order to obtain the largest extent of the outer continental shelf, each coastal state has interpreted the relevant provisions of the foot of the continental slope in their own favor, making the foot of the continental slope a hot and controversial issue in the delimitation of the outer continental shelf. Based on the provisions of the United Nations Convention on the Law of the Sea and the "Scientific and Technical Guidelines of the Commission on the Limits of the Continental Shelf" on the foot of the continental slope, combined with the geological characteristics of different types of continental margins and the delimitation practice of various coastal states, the determination of the base of the continental slope, the selection of the point of greatest change and the application of the evidence to the contrary are discussed.</p><p> <br></p>
[6]
ZHANG Y N, CHOU Y, CHEN J H, et al. Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas[J]. Journal of Computational and Applied Mathematics, 2013, 239: 406-414.
[7]
吴自银, 李家彪, 阳凡林, 等. 一种大陆坡脚点自动识别与综合判断方法[J]. 测绘学报, 2014, 43(2):170-177.
摘要
大陆坡脚点是200海里以外大陆架划界的核心界限点。根据《海洋法公约》第七十六条的规定和大陆架界限委员会的相关技术要求,论述了大陆坡脚点的确定方法和技术流程。通过对地形、坡度、二阶导数及D-P剖面的综合分析,提出基于二阶导数极值点和D-P算法的二次简化方法,以及原始剖面和D-P剖面的二次求导方法,通过7大步骤简化原始剖面,并给出数据点坡度、水深和二阶导数,以及曲线凹凸性、连续性和分段性等多重判定方法,实现了大陆坡脚点的自动识别。完成程序算法的底层开发,获得了与国际商用划界软件相一致的结果,并采用多波束实测水深数据对所提出的技术方法进行了有效性验证。
WU Z Y, LI J B, YANG F L, et al. Anintergrated method for automatic identification of the foot point of slope[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 170-177.
[8]
刘志军, 刘金, 金继业. 外大陆架坡脚线自动绘制研究[J]. 计算机工程与应用, 2007, 43(31):240-241,248.
LIU Z J, LIU J, JIN J Y. Study to automatic drawing of foot line of extended continental slope[J]. Computer Engineering and Applications, 2007, 43(31): 240-241, 248.
The foot of continental slope is an important terrain characteristic and is a basic evidence to get the out limit line of the expansion continental shelf right.Based on the ArcGis Engine platform,depended on our country multi-scales basic geography data and bathymetirc data,and strictly obeyed the United Nations article 76,the outside continental shelf slope point is gained according to seabed terrain data,then appropriate point is automatically choose to produce the foot line of continental slope.The research to the foot line of the continental shelf is very important for us to get the out limit line and regard our country.
[9]
彭认灿, 王家耀. 基于地球椭球体的缓冲区构建技术研究[J]. 测绘学报, 2002, 31(3):270-273.
PENG R C, WANG J Y. A research on creating buffer on the earth ellipsoid[J]. Acta Geodaetica et Cartographic Sinica, 2002, 31(3): 270-273.
[10]
OU Z Q, VANÍČEK P. Automatic tracing of the foot of the continental slope[J]. Marine Geodesy, 1996, 19(2): 181-195.
[11]
纪雪, 周兴华, 陈义兰, 等. 基于BP神经网络的海底地形复杂度自动分类方法研究[J]. 海岸工程, 2016, 35(4):32-41.
JI X, ZHOU X H, CHEN Y L, et al. Study on automatic classification method for seafloor terrain complexity based on BP neural network[J]. Coastal Engineering, 2016, 35(4): 32-41.
[12]
MATSINHE N D, TANG Y, LI C F, et al. The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean[J]. Acta Oceanologica Sinica, 2021, 40(7): 170-182.
[13]
姜素华, 高嵩, 李三忠, 等. 西太平洋洋-陆过渡带重磁异常与构造格架[J]. 地学前缘, 2017, 24(4):152-170.
摘要
西太平洋的重磁异常和构造格架一直是研究的热点,本文使用最新的覆盖全球的重力和磁力数据,在前人研究的基础上,重新对西太平洋洋陆过渡带的重力异常进行了研究,使用离散小波变换、解析延拓和ParkerOldenburg迭代反演法,反演得到了西太平洋莫霍面深度,结合水深地形数据,得到地壳厚度;通过对地壳厚度的分析,结合磁异常场分布,重新绘制了该区的超壳断裂体系分布图,明确了断层对西太平洋构造格架的控制作用,在此研究基础上,海陆综合考虑,结合地块构造层序列、沉积建造、变质作用以及构造演化历史,以地块之间的蛇绿岩带、洋陆转换带、俯冲带和洋中脊作为二级构造单元的分界线,对东亚大陆构造域和东亚大陆边缘构造域划分出9个二级构造单元和40个三级构造单元,依据地壳类型、位置与板块边缘的性质以及动力学模式,划分了中国近海24个盆地的类型,明确了西太平洋中国海的现今基本构造格局及演化特征。
JIANG S H, GAO S, LI S Z, et al. Gravity-magnetic anomaly and tectonic units in West Pacific Continent-Ocean Connection Zone[J]. Earth Science Frontiers, 2017, 24(4): 152-170.
[14]
MUELLER C O, JOKAT W. Geophysical evidence for the crustal variation and distribution of magmatism along the central coast of Mozambique[J]. Tectonophysics, 2017, 712/713: 684-703.
[15]
RILEY T R, KNIGHT K B. Age of pre-break-up Gondwana magmatism[J]. Antarctic Science, 2001, 13(2): 99-110.
[16]
JOURDAN F, BERTRAND H, FÉRAUD G, et al. Litho-spheric mantle evolution monitored by overlapping large igneous provinces: Case study in southern Africa[J]. Lithos, 2008, 107(3): 257-268.
[17]
THOR LEINWEBER V, KLINGELHOEFER F, NEBEN S, et al. The crustal structure of the Central Mozambique continental margin—Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa[J]. Tectonophysics, 2013, 599: 170-196.
[18]
FISCHER M D, UENZELMANN-NEBEN G, JACQUES G, et al. The Mozambique Ridge:A document of massive multistage magmatism[J]. Geophysical Journal International, 2017, 208(1): 449-467.
[19]
Commission on the Limits of the Continental Shelf. Outer limits of the continental shelf beyond 200 nautical miles from the baselines: Submissions to the Commission:Submission by the Republic of Mozambique[Z/OL]. New York: CLCS, 2010. https://www.un.org/Depts/los/clcs_new/submissions_files/submission_moz_52_2010.htm.
[20]
刘经南, 赵建虎. 多波束测深系统的现状和发展趋势[J]. 海洋测绘, 2002, 22(5):3-6.
LIU J N, ZHAO J H. Present situation and development trend of multi-beam sounding system[J]. Hydrographic Surveying and Charting, 2002, 22(5): 3-6.
[21]
朱庆, 李德仁. 多波束测深数据的误差分析与处理[J]. 武汉测绘科技大学学报, 1998, 23(1):1-4,46.
ZHU Q, LI D R. Error analysis and processing of multi-beam sounding data[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1998, 23(1): 1-4, 46.
[22]
陆秀平, 黄谟涛, 翟国君, 等. 多波束测深数据处理关键技术研究进展与展望[J]. 海洋测绘, 2016, 36(4):1-6,11.
LU X P, HUANG M T, ZHAI G J, et al. Development and prospect of key technologies for multibeame chosounding data processing[J]. Hydrographic Surveying and Charting, 2016, 36(4): 1-6, 11.
[23]
COOK P J, CARLETON C. Continental shelf limits: the scientific and legal interface[M]. New York: Oxford Univer-sity Press, 2000.
[24]
徐萃薇, 孙绳武. 计算方法引论[M]. 3版. 北京: 高等教育出版社, 2007:1-60.
XU C W, SUN S W. Introduction to calculation methods[M]. 3rd ed. Beijing: Higher Education Press, 2007: 1-60.

基金

国家自然科学基金项目(41830537)
国家重点研发计划项目(2017YFC1405504)
“全球变化与海气相互作用”专项二期任务(GASI-01-DLJHJ-CM)

PDF(6192 KB)

Accesses

Citation

Detail

段落导航
相关文章

/