
印度洋静止气象卫星Meteosat-8/SEVIRI海面温度验证
Validation of sea surface temperature from the geostationary meteorological satellite Meteosat-8/SEVIRI over the Indian Ocean
海面温度(sea surface temperature, SST)是海洋和气象研究中的关键气候变量,广泛应用于海-气相互作用、海洋混合、边界层过程及海洋状态预报等领域。欧洲静止气象卫星Meteosat-8/SEVIRI(M8)提供的逐小时SST数据是上述工作的重要数据源,但其误差的时空变化尚不明确。为评估M8卫星SST数据的可靠性和适用性,利用实测SST质量监测平台(iQuam)提供的船只、漂流浮标和Argo浮标的SST数据,对M8卫星在印度洋区域的逐小时SST数据进行了验证。结果显示,M8卫星与三种实测数据的平均偏差为-0.06~-0.10 ℃,均方根误差为0.48~1.03 ℃,决定系数为0.96~0.99。其中,漂流浮标与M8卫星的匹配数据量最大、覆盖最广,因此漂流浮标是理想的验证数据源。分析M8卫星SST数据偏差的时空分布发现:在阿拉伯海西北部和孟加拉湾西北部夜间存在0.6 ℃的负偏差,在该海域白天的负偏差更大,而在40°S—60°S部分海域白天则出现了超过1.0 ℃的负偏差;M8卫星SST在夏季较易出现正偏差的极大值,在春、夏转换季则存在极小负偏差。
Sea surface temperature (SST) is a key climate variable in oceanographic and meteorological research, widely applied in studies of ocean-atmosphere interactions, ocean mixing, boundary layer processes, and ocean state forecasting. The hourly SST data provided by the European geostationary meteorological satellite Meteosat-8/SEVIRI (M8) is an important data source for these studies. However, the spatiotemporal variations in the errors of SST data from M8 are not yet clear. To assess the reliability and applicability of SST data from M8, this study uses in-situ SST data from the iQuam quality monitoring platform which includes data from ships, drifting buoys, and Argo floats, to validate the hourly SST data from M8 in the Indian Ocean region. The results show that the average bias between M8 and the three types of in-situ data ranges from -0.06 to -0.10 ℃, the root mean square error ranges from 0.48 to 1.03 ℃, and the coefficient of determination ranges from 0.96 to 0.99. Among these, drifting buoys have the most matchups with M8 and the widest coverage, making them an ideal validation data source. Analysis of the spatiotemporal distribution of SST data biases from M8 reveals a -0.6 ℃ bias at night in the northwestern Arabian Sea and northwestern Bay of Bengal, with larger negative biases during the day in these areas, and a bias exceeding -1.0 ℃ during the day in parts of the 40°S-60°S region. SST data from M8 tends to show maximum positive biases in summer and minimum negative biases during the spring-to-summer transition period.
印度洋 / Meteosat-8/SEVIRI / 海面温度 / 验证
Indian Ocean / Meteosat-8/SEVIRI / sea surface temperature / validation
[1] |
|
[2] |
靳光强. 海水温度相似预报方法研究与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018.
|
[3] |
罗晓凡, 魏皓, 袁承仪. 利用卫星资料分析黄海海表温度的年际与年代际变化[J]. 中国海洋大学学报:自然科学版, 2012, 42(10):19-25.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
管磊, 陈锐, 贺明霞. ERS-1/ATSR海表温度在热带太平洋和西北太平洋的印证与分析[J]. 遥感学报, 2002, 6(1):63-69.
|
[16] |
范海燕, 滕军, 管磊, 等. NOAA/AVHRR卫星海表温度在西北太平洋的印证及分析[J]. 海洋预报, 2009, 26(2):7-14.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验[J]. 应用气象学报, 2020, 31(6):729-739.
|
[22] |
张贝贝. 环境星热红外影像海表温度反演及真实性检验[D]. 太原: 太原理工大学, 2022.
|
[23] |
|
[24] |
门聪. 海洋一号B卫星海洋水色扫描仪(HY-1B/COCTS)海表温度反演与印证[D]. 青岛: 中国海洋大学, 2013.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
李凝慧, 管磊. 西太平洋东印度洋Suomi-NPP/VIIRS海表温度印证[J]. 中国海洋大学学报:自然科学版, 2021, 51(8):115-122.
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
毛志华, 张贤良, 刘建强, 等. HY1C/1D海表温度对Terra/Aqua产品的可替代性分析[J]. 海洋学报, 2023, 45(3):97-112.
|
/
〈 |
|
〉 |