深度学习在印度洋偶极子预测中的应用研究综述

郑梦轲, 方巍, 张霄智

海洋学研究 ›› 2024, Vol. 42 ›› Issue (3) : 51-63.

PDF(2495 KB)
PDF(2495 KB)
海洋学研究 ›› 2024, Vol. 42 ›› Issue (3) : 51-63. DOI: 10.3969/j.issn.1001-909X.2024.03.004
研究综述

深度学习在印度洋偶极子预测中的应用研究综述

作者信息 +

Review of application of deep learning in Indian Ocean Dipole prediction

Author information +
文章历史 +

摘要

印度洋偶极子(Indian Ocean Dipole,IOD)是影响区域及全球气候变化的关键气候现象。准确预测IOD对于理解全球气候至关重要,但传统方法在捕捉其复杂性和非线性方面的局限限制了预测能力。该文首先概述了IOD的相关理论,并评估了传统预测方法的优缺点。然后,综合分析了深度学习在IOD预测领域的应用和发展,特别强调了深度学习模型在自动特征提取、非线性关系建模和大数据处理方面相较于传统方法的优势。与此同时,该文还讨论了深度学习模型在IOD预测中所面临的挑战,包括数据稀缺、过拟合以及模型可解释性等问题,并提出了未来研究的方向,旨在推动深度学习技术在气候预测领域的创新与进步。

Abstract

The Indian Ocean Dipole (IOD) is a pivotal climate phenomenon in the Indian Ocean region, exerting a significant impact on the climate change of the surrounding areas and the global climate system. Accurate prediction of IOD is essential for comprehending the dynamics of the global climate, yet traditional forecasting methods are limited in capturing its complexity and nonlinearity, constraining predictive capabilities. This paper begins by outlining the relevant theories of IOD and evaluates the strengths and weaknesses of traditional forecasting methods. It then provides a comprehensive analysis of the application and development of deep learning in the field of IOD prediction, highlights the advantages of deep learning models over traditional methods in terms of automatic feature extraction, nonlinear relationship modeling, and large data processing capabilities. Additionally, the paper discusses the challenges faced by deep learning models in IOD forecasting: including data scarcity, overfitting, and model interpretability issues, and proposes future research directions to promote innovation and progress in the application of deep learning technology in the field of climate prediction.

关键词

全球气候变化 / 神经网络 / CNN / LSTM / ConvLSTM / 气候预测 / 气象变化 / 数据处理

Key words

global climate change / neural network / CNN / LSTM / ConvLSTM / climate prediction / climate variability / data processing

引用本文

导出引用
郑梦轲, 方巍, 张霄智. 深度学习在印度洋偶极子预测中的应用研究综述[J]. 海洋学研究. 2024, 42(3): 51-63 https://doi.org/10.3969/j.issn.1001-909X.2024.03.004
ZHENG Mengke, FANG Wei, ZHANG Xiaozhi. Review of application of deep learning in Indian Ocean Dipole prediction[J]. Journal of Marine Sciences. 2024, 42(3): 51-63 https://doi.org/10.3969/j.issn.1001-909X.2024.03.004
中图分类号: P732   

参考文献

[1]
肖莺, 张祖强, 何金海. 印度洋偶极子研究进展综述[J]. 热带气象学报, 2009, 25(5):621-627.
XIAO Y, ZHANG Z Q, HE J H. Progresses in the studies on Indian Ocean Dipoles[J]. Journal of Tropical Meteorology, 2009, 25(5): 621-627.
[2]
黄怡陶, 张文君, 薛奥运. ENSO对印度洋偶极子非对称性的影响及机制研究[J]. 气象科学, 2023, 43(1):1-14.
HUANG Y T, ZHANG W J, XUE A Y. Influence of ENSO on Indian Ocean Dipole skewness and its physical mechanism[J]. Journal of the Meteorological Sciences, 2023, 43(1): 1-14.
[3]
BAHIYAH A, WIRASATRIYA A, MARDIANSYAH W, et al. Massive SST-front anomaly in the tip of Sumatra waters triggered by extreme positive IOD 2019 event[J]. International Journal of Remote Sensing, 2023: 1-18.
[4]
姜继兰, 刘屹岷, 李建平, 等. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6):579-591.
摘要
印度洋偶极子是热带印度洋中重要的年际变率之一,对印度洋周边国家乃至全球的气候有着重要的影响,关于其形成机制及气候影响的研究对于气候预测具有重要意义。主要回顾了近10年印度洋偶极子的相关研究进展,包括印度洋偶极子的基本特征、与热带太平洋中厄尔尼诺—南方涛动之间的关系、与亚洲夏季风之间的关系、对全球气候的影响以及全球变暖背景下的变化等。印度洋偶极子与热带太平洋中厄尔尼诺—南方涛动之间的关系体现为二者之间是相互影响的,但不同类型的印度洋偶极子对热带太平洋中厄尔尼诺—南方涛动的影响机制尚不明确,还需进一步的研究。印度洋偶极子与亚洲夏季风之间的关系体现为二者之间存在强烈的相互作用,印度洋偶极子与印度洋东部夏季风环流之间存在相互促进作用,而印度洋偶极子与印度夏季风环流之间的相互作用尚需进一步研究。此外,研究表明全球变暖背景下极端正印度洋偶极子的发生将增多,同时极端印度洋偶极子对我国极端气候事件的发生有着重要影响。以往的研究主要集中于单独的印度洋偶极子或印度洋偶极子和热带太平洋中厄尔尼诺—南方涛动的结合对我国极端气候的影响,而印度洋偶极子与中高纬环流系统或泛热带海洋之间的协同作用对我国极端气候事件的影响还亟需相关研究。对印度洋偶极子的系统性回顾可为未来印度洋偶极子的研究提供一定的科学基础。
JIANG J L, LIU Y M, LI J P, et al. Indian Ocean Dipole: A review and perspective[J]. Advances in Earth Science, 2021, 36(6): 579-591.
[5]
MAGEE A D, KIEM A S. Using indicators of ENSO, IOD, and SAM to improve lead time and accuracy of tropical cyclone outlooks for Australia[J]. Journal of Applied Meteorology and Climatology, 2020, 59(11): 1901-1917.
[6]
ROY I, MLIWA M, TROCCOLI A. Important drivers of East African monsoon variability and improving rainy season onset prediction[J]. Natural Hazards, 2024, 120: 429-445.
[7]
LIGUORI G, MCGREGOR S, SINGH M, et al. Revisiting ENSO and IOD contributions to Australian precipitation[J]. Geophysical Research Letters, 2022, 49(1): e2021GL094295.
[8]
KURNIADI A, WELLER E, MIN S K, et al. Independent ENSO and IOD impacts on rainfall extremes over Indonesia[J]. International Journal of Climatology, 2021, 41(6): 3640-3656.
[9]
NGUYEN-LE D, NGO-DUC T, MATSUMOTO J. The tele-connection of the two types of ENSO and Indian Ocean Dipole on Southeast Asian autumn rainfall anomalies[J]. Climate Dynamics, 2024, 62(6): 1-23.
[10]
SAJI N H, GOSWAMI B N, VINAYACHANDRAN P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401(6751): 360-363.
[11]
CAI W J, SANTOSO A, WANG G J, et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming[J]. Nature, 2014, 510(7504): 254-258.
[12]
DU Y, ZHANG Y H, ZHANG L Y, et al. Thermo-cline warming induced extreme Indian Ocean Dipole in 2019[J]. Geophysical Research Letters, 2020, 47(18):e2020GL090079.
[13]
ABRAM N J, GAGAN M K, COLE J E, et al. Recent intensification of tropical climate variability in the Indian Ocean[J]. Nature Geoscience, 2008, 1(12): 849-853.
[14]
ABRAM N J, WRIGHT N M, ELLIS B, et al. Coupling of Indo-Pacific climate variability over the last millennium[J]. Nature, 2020, 579(7799): 385-392.
[15]
LING F H, LUO J J, LI Y, et al. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole[J]. Nature Communications, 2022, 13(1): 7681.
[16]
MCKENNA S, SANTOSO A, GUPTA A S, et al. Indian Ocean Dipole in CMIP5 and CMIP6: Characteristics, biases, and links to ENSO[J]. Scientific Reports, 2020, 10(1): 11500.
[17]
ZHANG Y, ZHOU W, WANG X, et al. IOD,ENSO, and seasonal precipitation variation over Eastern China[J]. Atmospheric Research, 2022, 270: 106042.
[18]
HUANG K, HUANG B H, WANG D X, et al. Diversity of strong negative Indian Ocean Dipole events since 1980: Characteristics and causes[J]. Climate Dynamics, 2024, 62(3): 2017-2040.
[19]
LESTARI R K, KOH T Y. Statistical evidence for asy-mmetry in ENSO-IOD interactions[J]. Atmosphere-Ocean, 2016, 54(5): 498-504.
[20]
董笛, 何金海. 印度洋偶极子与两类El Niño的关联及其可能机理[J]. 热带气象学报, 2015, 31(2):182-192.
DONG D, HE J H. The linkage between Indian Ocean Dipole and two types of El Niño event and its possible mechanisms[J]. Journal of Tropical Meteorology, 2015, 31(2): 182-192.
[21]
LI Z G, CAI W J, LIN X P. Dynamics of changing impacts of tropical Indo-Pacific variability on Indian and Australian rainfall[J]. Scientific Reports, 2016, 6: 31767.
A positive Indian Ocean Dipole (IOD) and a warm phase of the El Nino-Southern Oscillation (ENSO) reduce rainfall over the Indian subcontinent and southern Australia. However, since the 1980s, El Nino's influence has been decreasing, accompanied by a strengthening in the IOD's influence on southern Australia but a reversal in the IOD's influence on the Indian subcontinent. The dynamics are not fully understood. Here we show that a post-1980 weakening in the ENSO-IOD coherence plays a key role. During the pre-1980 high coherence, ENSO drives both the IOD and regional rainfall, and the IOD's influence cannot manifest itself. During the post-1980 weak coherence, a positive IOD leads to increased Indian rainfall, offsetting the impact from El Nino. Likewise, the post-1980 weak ENSO-IOD coherence means that El Nino's pathway for influencing southern Australia cannot fully operate, and as positive IOD becomes more independent and more frequent during this period, its influence on southern Australia rainfall strengthens. There is no evidence to support that greenhouse warming plays a part in these decadal fluctuations.
[22]
POWER K, AXELSSON J, WANGDI N, et al. Regional and local impacts of the ENSO and IOD events of 2015 and 2016 on the Indian summer monsoon—A Bhutan case study[J]. Atmosphere, 2021, 12(8): 954.
[23]
SEMENOV S M, POPOV I O, YASYUKEVICH V V. Statis-tical model for assessing the formation of climate-related hazards based on climate monitoring data[J]. Russian Meteorology and Hydrology, 2020, 45(5): 339-344.
[24]
PEREVEDENTSEV Y P, SHANTALINSKII K M, GURY-ANOV V V, et al. Empirical statistical model of climatic changes in the Volga region[J]. IOP Conference Series: Earth and Environmental Science, 2018, 211: 012016.
[25]
WANG Y F, XU Y P, SONG S, et al. Assessing the impacts of climatic and anthropogenic factors on water level variation in the Taihu Plain based on non-stationary statistical models[J]. Environmental Science and Pollution Research International, 2020, 27(18): 22829-22842.
Water level (a vital indicator for flood warnings and water management in floodplains) has been changed notably due to climatic and anthropogenic forces; however, very little is known about the relative effects of these agents. In this study, we take the Taihu Plain as an example to investigate potential factors driving changes in water level components through quantiles from 1954 to 2014. To quantify the extent of water level component changes attributable to climate variability and human activity, several non-stationary models considering rainfall, tide, evaporation, and hydraulic regulation as covariates are established based on generalized additive models for location, scale, and shape. The results indicate that most water level components increased over time and changed abruptly around the mid-1980s. As for climatic factors, the variability of rainfall, tide and evaporation significantly affected water level variation based on most quantiles from 1954 to 2014. Among several kinds of human activities, hydraulic regulation was a key factor influencing water level based on a high correlation coefficient. Positive effects were identified from hydraulic regulation regarding the association between rainfall and water level components; these effects depend on water level quantiles and the amount of rainfall occurrence. Our study has broad implications, providing a better understanding of water level variation and regional flood management.
[26]
方玥炜, 唐佑民, 李俊德, 等. 几种统计模型对热带印度洋海温异常的预报[J]. 海洋学研究, 2018, 36(1):1-15.
摘要
本文利用神经网络模型、多元线性回归模型和马尔科夫模型分别建立了统计预报模型,对热带印度洋海表温度异常(SSTA)和印度洋偶极子(IOD)指数进行了63 a的长时间回报实验,并详细比较了线性和非线性统计预报模型的差异。结果表明:统计模型对IOD指数的预报技巧和现有动力模式预报技巧相差不大,对偶极子指数(DMI)有效预报时效为3个月,东极子指数(EIO)为5~6个月,西极子指数(WIO)达到8~9个月。IOD事件强烈的季节锁相特性使得对秋季的DMI指数可以提前4个月做出有效预报。加入同期的ENSO指数来预报IOD指数,能有效地提高IOD预报技巧,特别是对IOD峰值的预报。复杂的神经网络模型和简单的多元线性回归模型在对SSTA和IOD指数的预报具有同等的效果。
FANG Y W, TANG Y M, LI J D, et al. Several statistical models to predict tropical Indian Ocean sea surface tempe-rature anomaly[J]. Journal of Marine Sciences, 2018, 36(1): 1-15.
[27]
LI X W, BORDBAR M H, LATIF M, et al. Monthly to seasonal prediction of tropical Atlantic sea surface tempe-rature with statistical models constructed from observations and data from the Kiel Climate Model[J]. Climate Dyna-mics, 2020, 54(3): 1829-1850.
[28]
YANG L C, FRANZKE C L E, FU Z T. Evaluation of the ability of regional climate models and a statistical model to represent the spatial characteristics of extreme precipitation[J]. International Journal of Climatology, 2020, 40(15): 6612-6628.
[29]
FERREIRA N C R, MIRANDA J H, COOKE R. Climate change and extreme events on drainage systems: Numerical simulation of soil water in corn crops in Illinois (USA)[J]. International Journal of Biometeorology, 2021, 65(7): 1001-1013.
The influence of climate conditions in the agricultural environment is important in evapotranspiration, water availability for plants and roots, and other processes. This research focuses on two aspects: (1) the effects of climate change on the occurrence of extreme events that may affect agricultural processes in a region in Illinois (USA), and (2) the effects of climate change on the soil water dynamics in a corn crop. Different climate scenarios developed by the Institut Pierre Simon Laplace, using a climate model with medium resolution-IPSL(CM5MR), provided input to simulate soil water dynamics in two fields with different drainage system layouts. The Hydrus model simulated surface flux and runoff. Results indicate that the variation of precipitation and temperature in the future may increase extreme events, representing a risk for agriculture. Hydrus simulations indicate different results accordingly to the drainage layout, suggesting that it may be necessary to make adjustments in drainage systems in the future. In general, surface flux and runoff will increase over time, and these changes are more related to extreme events than average values. Extreme event indices show vulnerability in agriculture and will be reflected in changes in the soil water dynamics, and may increase the climatic risk of corn production.
[30]
FANG X W, LI Z, CHENG C, et al. Response of freezing/thawing indexes to the wetting trend under warming climate conditions over the Qinghai-Tibetan Plateau during 1961-2010: A numerical simulation[J]. Advances in Atmospheric Sciences, 2023, 40(2): 211-222.
[31]
晏红明, 杨辉, 李崇银. 赤道印度洋海温偶极子的气候影响及数值模拟研究[J]. 海洋学报, 2007, 29(5):31-39.
YAN H M, YANG H, LI C Y. Numerical simulations on the climate impacts of temperature dipole in the equatorial Indian Ocean[J]. Acta Oceanologica Sinica, 2007, 29(5): 31-39.
[32]
胡帅, 吴波, 周天军. 近期气候预测系统IAP-DecPreS对印度洋偶极子的回报技巧:全场同化和异常场同化的比较[J]. 大气科学, 2019, 43(4):831-845.
HU S, WU B, ZHOU T J. Predictive skill of the near-term climate prediction system IAP-DecPreS for the Indian Ocean Dipole: A comparison of full-field and anomaly initializations[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 831-845.
[33]
FANG M, LI X. Paleoclimate data assimilation: Its moti-vation, progress and prospects[J]. Science China Earth Sciences, 2016, 59(9): 1817-1826.
[34]
SHAHABADI M B, BÉLAIR S, BILODEAU B, et al. Impact of weak coupling between land and atmosphere data assimilation systems on environment and climate change Canada’s global deterministic prediction system[J]. Weather and Forecasting, 2019, 34(6): 1741-1758.
[35]
HU G N, DANCE S L, BANNISTER R N, et al. Progress, challenges, and future steps in data assimilation for convection-permitting numerical weather prediction: Report on the virtual meeting held on 10 and 12 November 2021[J]. Atmospheric Science Letters, 2023, 24(1): e1130.
[36]
DANIEL D, AYENEW T, FLETCHER C G, et al. Nume-rical groundwater flow modelling under changing climate in Abaya-Chamo lakes basin, Rift Valley, Southern Ethiopia[J]. Modeling Earth Systems and Environment, 2022, 8(3): 3985-3999.
[37]
SHINDE P P, SHAH S. A review of machine learning and deep learning applications[C]//2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), August 16-18, 2018, Pune, India. IEEE, 2018: 1-6.
[38]
HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568-572.
[39]
SUN M, CHEN L, LI T, et al. CNN-based ENSO forecasts with a focus on SSTA zonal pattern and physical interpre-tation[J]. Geophysical Research Letters, 2023, 50(20):e2023GL105175.
[40]
LIU J, TANG Y M, WU Y L, et al. Forecasting the Indian Ocean Dipole with deep learning techniques[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094407.
[41]
ZHANG Y, GU Z H, VAN GRIENSVEN THÉ J, et al. The discharge forecasting of multiple monitoring station for Humber River by Hybrid LSTM models[J]. Water, 2022, 14(11): 1794.
[42]
NIGAM A, SRIVASTAVA S. Hybrid deep learning models for traffic stream variables prediction during rainfall[J]. Multimodal Transportation, 2023, 2(1): 100052.
[43]
CAO X Q, GUO Y N, LIU B N, et al. ENSO prediction based on long short-term memory (LSTM)[J]. IOP Confe-rence Series: Materials Science and Engineering, 2020, 799: 012035.
[44]
HUANG A, VEGA-WESTHOFF B, SRIVER R L. Analyz-ing El Niño-Southern Oscillation predictability using long-short-term-memory models[J]. Earth and Space Science, 2019, 6(2): 212-221.
[45]
KHEYRURI Y, SHARAFATI A, NESHAT A. Predicting agricultural drought using meteorological and ENSO parameters in different regions of Iran based on the LSTM model[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37(9): 3599-3613.
[46]
HAQ D Z, RINI NOVITASARI D C, HAMID A, et al. Long short-term memory algorithm for rainfall prediction based on El- Niño and IOD data[J]. Procedia Computer Science, 2021, 179: 829-837.
[47]
谢文鸿, 徐广珺, 董昌明. 基于ConvLSTM机器学习的风暴潮漫滩预报研究[J]. 大气科学学报, 2022, 45(5):674-687.
XIE W H, XU G J, DONG C M. Research on storm surge floodplain prediction based on ConvLSTM machine learning[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 674-687.
[48]
GENG H T, HU Z Y, WANG T L. ConvLSTM based temperature forecast modification model for north China[J]. Journal of Tropical Meteorology, 2022, 28(4): 405-412.
[49]
MOISHIN M, DEO R C, PRASAD R, et al. Designing deep-based learning flood forecast model with ConvLSTM hybrid algorithm[J]. IEEE Access, 2021, 9: 50982-50993.
[50]
LI C, FENG Y, SUN T Y, et al. Long term Indian Ocean Dipole (IOD) index prediction used deep learning by ConvLSTM[J]. Remote Sensing, 2022, 14(3): 523.
[51]
RATNAM J V, DIJKSTRA H A, BEHERA S K. A machine learning based prediction system for the Indian Ocean Dipole[J]. Scientific Reports, 2020, 10(1): 284.
[52]
CHEN P, SUN B, WANG H J, et al. Improving the CFSv2 prediction of the Indian Ocean Dipole based on a physical-empirical model and a deep-learning approach[J]. International Journal of Climatology, 2022, 42(16): 9200-9214.
[53]
WANG G G, CHENG H L, ZHANG Y M, et al. ENSO analysis and prediction using deep learning: A review[J]. Neurocomputing, 2023, 520: 216-229.
[54]
LUCIA S, KARG B. A deep learning-based approach to robust nonlinear model predictive control[J]. IFAC PapersOnLine, 2018, 51(20): 511-516.
[55]
HABIBI O, CHEMMAKHA M, LAZAAR M. Effect of features extraction and selection on the evaluation of machine learning models[J]. IFAC-PapersOnLine, 2022, 55(12): 462-467.
[56]
CHARILAOU P, BATTAT R. Machine learning models and over-fitting considerations[J]. World Journal of Gastroen-terology, 2022, 28(5): 605-607.
[57]
化盈盈, 张岱墀, 葛仕明. 深度学习模型可解释性的研究进展[J]. 信息安全学报, 2020, 5(3):1-12.
HUA Y Y, ZHANG D C, GE S M. Research progress in the interpretability of deep learning models[J]. Journal of Cyber Security, 2020, 5(3): 1-12.
[58]
DING W P, ABDEL-BASSET M, HAWASH H, et al. Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey[J]. Information Sciences, 2022, 615: 238-292.
[59]
MARIN I, KUZMANIC SKELIN A, GRUJIC T. Empirical evaluation of the effect of optimization and regularization techniques on the generalization performance of deep convolutional neural network[J]. Applied Sciences, 2020, 10(21): 7817.
[60]
SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60.
[61]
ZHUANG F Z, QI Z Y, DUAN K Y, et al. A compre-hensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.
[62]
MATVEEV S A, OSELEDETS I V, PONOMAREV E S, et al. Overview of visualization methods for artificial neural networks[J]. Computational Mathematics and Mathematical Physics, 2021, 61(5): 887-899.
[63]
曾春艳, 严康, 王志锋, 等. 深度学习模型可解释性研究综述[J]. 计算机工程与应用, 2021, 57(8):1-9.
摘要
深度学习技术以数据驱动学习的特点,在自然语言处理、图像处理、语音识别等领域取得了巨大成就。但由于深度学习模型网络过深、参数多、复杂度高等特性,该模型做出的决策及中间过程让人类难以理解,因此探究深度学习的可解释性成为当前人工智能领域研究的新课题。以深度学习模型可解释性为研究对象,对其研究进展进行总结阐述。从自解释模型、特定模型解释、不可知模型解释、因果可解释性四个方面对主要可解释性方法进行总结分析。列举出可解释性相关技术的应用,讨论当前可解释性研究存在的问题并进行展望,以推动深度学习可解释性研究框架的进一步发展。
ZENG C Y, YAN K, WANG Z F, et al. Survey of interpretability research on deep learning models[J]. Computer Engineering and Applications, 2021, 57(8): 1-9.

With the characteristics of data-driven learning, deep learning technology has made great achievements in the fields of natural language processing, image processing, and speech recognition. However, due to the deep learning model featured by deep networks, many parameters, high complexity and other characteristics, the decisions and intermediate processes made by the model are difficult for humans to understand. Therefore, exploring the interpretability of deep learning has become a new topic in the current artificial intelligence field. This review takes the interpretability of deep learning models as the research object and summarizes its progress. Firstly, the main interpretability methods are summarized and analyzed from four aspects:self-explanatory model, model-specific explanation, model-agnostic explanation, and causal interpretability. At the same time, it enumerates the application of interpretability related technologies, and finally discusses the existing problems of current interpretability research to promote the further development of the deep learning interpretability research framework.

[64]
SAMO M, MASE J M M, FIGUEREDO G. Deep learning with attention mechanisms for road weather detection[J]. Sensors, 2023, 23(2): 798.
[65]
MOHAMMED A, KORA R. A comprehensive review on ensemble deep learning: Opportunities and challenges[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(2): 757-774.

基金

国家自然科学基金面上项目(42475149)
中国气象局流域强降水重点开放实验室开放研究基金(2023BHR-Y14)
江苏省研究生科研与实践创新计划项目(KYCX24_1533)
江苏省研究生科研与实践创新计划项目(SJCX24_0476)
江苏省研究生科研与实践创新计划项目(SJCX24_0477)

PDF(2495 KB)

Accesses

Citation

Detail

段落导航
相关文章

/