
印尼贯穿流出流海域次表层潜流的来源和季节-年际变化特征
Sources and characteristics of seasonal-interannual variability of subsurface undercurrents in the Indonesian Throughflow outflow region
结合涡分辨率数值模拟数据和历史水文观测数据,研究了印尼贯穿流之下两支次表层潜流——位于翁拜海峡的翁拜潜流和帝汶通道的帝汶潜流的来源和季节与年际变化特征。 结果表明,这两支潜流存在于大约200~800 m深度之间,是一个准永久性存在的潜流系统。翁拜潜流的形成主要与南爪哇潜流的东伸有关,而帝汶潜流水体来源较为复杂,主要是南爪哇潜流和卢温潜流的混合水。两支潜流均具有明显的季节变化和年际变化,其中在季节尺度上,具有显著半年周期,通常在印度洋季风转换期(4、5月份和10月份)流量达到峰值。结合历史风场、卫星高度计和温盐观测数据,发现与局地风场及其上升流相关的次表层经向压强梯度是导致其季节变化的主要因素。在年际尺度上,潜流存在2~4 a的周期,与印度洋偶极子存在显著相关。
Using eddy-resolving numerical simulation data and historical hydrological observation data, this study investigates the sources, seasonal and interannual variability of two subsurface undercurrents under the Indonesian Throughflow—the Ombai Undercurrent located in the Ombai Strait and the Timor Undercurrent located in the Timor Channel. The results indicate that these two undercurrents exist at depths of approximately 200-800 m, which are a quasi-permanent undercurrent system. The formation of the Ombai Undercurrent is mainly related to the eastward extension of the South Java Undercurrent, while the water source of the Timor Undercurrent is more complex, mostly a mixture of the South Java Undercurrent and the Leeuwin Undercurrent. Both subsurface undercurrents exhibit significant seasonal and interannual variations, with a significant semiannual period at the seasonal scale, typically peaking during the Indian Ocean monsoon transition period (April, May, and October). Combining historical wind, satellite altimeters, and temperature and salinity observation data, it is found that the meridional pressure gradient in the subsurface layer related to local wind and their upwelling is the dominant factor leading to their seasonal changes. At the interannual scale, there is a period of 2-4 years for subsurface undercurrents, which is significantly correlated with the Indian Ocean dipole.
印度尼西亚海域 / 东南印度洋 / 次表层潜流 / 翁拜潜流 / 帝汶潜流 / 季节变化 / 年际变化 / 印尼贯穿流
Indonesian Seas / Southeast Indian Ocean / subsurface undercurrent / Ombai Undercurrent / Timor Undercurrent / seasonal variation / interannual variation / Indonesian Throughflow
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
The Maritime Continent (MC) is a low-latitude chokepoint of the world oceans with the Indonesian throughflow (ITF) linking the Indo-Pacific oceans, influencing global ocean circulation, climate, and biogeochemistry. While previous studies suggested that South-China-Sea freshwaters north of the MC intruding the Indonesian Seas weaken the ITF during boreal winter, the impact of the MC water cycle on the ITF has not been investigated. Here we use ocean-atmosphere-land satellite observations to reveal the dominant contribution of the MC monsoonal water cycle to boreal winter-spring freshening in the Java Sea through local precipitation and runoff from Kalimantan, Indonesia. We further demonstrate that the freshening corresponds to a reduced southward pressure gradient that would weaken the ITF. Therefore, the MC water cycle plays a critical role regulating ITF seasonality. The findings have strong implications to longer-term variations of the ITF associated with the variability and change of Indo-Pacific climate and MC water cycle.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
魏凤英. 现代气候统计诊断与预测技术[M].第2版. 北京: 气象出版社, 2007.
|
[27] |
|
[28] |
|
[29] |
|
/
〈 |
|
〉 |