海洋学研究 ›› 2024, Vol. 42 ›› Issue (4): 43-57.DOI: 10.3969/j.issn.1001-909X.2024.04.005
谭亦杨1,2,3(), 白雁1,2,3,*(
), 李腾2,3, 郑芯瑜1,2,3, 张银雪4, 张异凡1,2,3
收稿日期:
2024-01-12
修回日期:
2024-02-01
出版日期:
2024-12-15
发布日期:
2025-02-08
通讯作者:
白雁
作者简介:
*白雁(1979—),女,研究员,主要从事卫星海洋遥感和海洋碳循环遥感研究,E-mail:baiyan@sio.org.cn。基金资助:
TAN Yiyang1,2,3(), BAI Yan1,2,3,*(
), LI Teng2,3, ZHENG Xinyu1,2,3, ZHANG Yinxue4, ZHANG Yifan1,2,3
Received:
2024-01-12
Revised:
2024-02-01
Online:
2024-12-15
Published:
2025-02-08
Contact:
BAI Yan
摘要:
南极磷虾(Euphausia superba)是维持南大洋生物多样性的关键物种,是南大洋的重点保护与限制捕捞对象。在气候变化对南大洋生态环境持续显著影响的背景下,亟需了解南极磷虾的时空分布、变化趋势及其栖息地适宜性。本文基于南极磷虾出现记录及长时序遥感与再分析数据,利用藻华物候与海冰消长的时序特征参数及相关环境参数,构建了宇航员海与迪尔维尔海南极磷虾栖息地适宜性的最大熵模型(Maxent)。研究发现,相较于常规单一时刻环境参数,时序特征参数更适合用于南极磷虾栖息地适宜性评估。基于Maxent模型,反演了两个典型海域超过20年的南极磷虾出现时间和频率变化序列,并通过分析多个环境参数的年际变化趋势进行机制解释。南极磷虾出现时的环境参数显示,宇航员海整体叶绿素质量浓度低于迪尔维尔海,无冰期更短,温度更低,南极磷虾出现时间更晚,且主要由沿岸区域的南极磷虾幼体与年轻个体构成。在1997—2019年,宇航员海沿岸区域磷虾出现时间逐渐提前,出现总天数逐年增多,主要是由于沿岸区域藻华起始时间提前,同时叶绿素质量浓度增加也为南极磷虾幼体提供了更充足的食物来源。迪尔维尔海受海水增温、无冰期缩短、叶绿素质量浓度降低等环境变化趋势的影响,该区域磷虾成熟个体或向更适宜环境迁移,南极磷虾每年出现总天数下降。在模型构建基础上,本研究首次获得了宇航员海与迪尔维尔海的南极磷虾长时序分布数据,可为了解气候变化对南大洋生物的影响、南大洋保护区规划与渔业管理提供科学依据。
中图分类号:
谭亦杨, 白雁, 李腾, 郑芯瑜, 张银雪, 张异凡. 基于时序特征参数的南极磷虾栖息地适宜性模型及长时序变化分析——以宇航员海与迪尔维尔海为例[J]. 海洋学研究, 2024, 42(4): 43-57.
TAN Yiyang, BAI Yan, LI Teng, ZHENG Xinyu, ZHANG Yinxue, ZHANG Yifan. Antarctic krill habitat suitability modeling based on timing parameters and long-term change analysis: A case study in the Cosmonauts Sea and D’Urville Sea[J]. Journal of Marine Sciences, 2024, 42(4): 43-57.
图1 南大洋南极磷虾出现记录、海流分布特征及研究区域位置 (图中环流分布改绘自文献[28]。)
Fig.1 Location of the study area, Antarctic krill presence records and ocean currents in the Southern Ocean (Ocean currents are redrawn from reference [28].)
图2 宇航员海与迪尔维尔海南极磷虾出现记录数据的年统计分布(a,c)与月统计分布(b,d)
Fig.2 Annual (a, c) and monthly (b, d)presence records of Antarctic krill surveys in the Cosmonauts Sea and the D’Urville Sea
环境参数 | 数据集 | 时间 分辨率 | 空间 分辨率 |
---|---|---|---|
海面温度(SST) | AVHRR OI | 日均 | 0.25° |
海冰密集度(SIC) | Sea Ice Index (G02135) | 日均 | 25 km |
海面叶绿素质量浓度(CHL) | OC-CCI | 8 d | 4 km |
混合层深度(MLD) | C-GLORS | 日均 | 0.25° |
表1 本研究使用的遥感与再分析数据参数信息
Tab.1 Parameters information of satellite data and reanalysis data in this study
环境参数 | 数据集 | 时间 分辨率 | 空间 分辨率 |
---|---|---|---|
海面温度(SST) | AVHRR OI | 日均 | 0.25° |
海冰密集度(SIC) | Sea Ice Index (G02135) | 日均 | 25 km |
海面叶绿素质量浓度(CHL) | OC-CCI | 8 d | 4 km |
混合层深度(MLD) | C-GLORS | 日均 | 0.25° |
图3 藻华(a)与海冰(b)时序特征参数定义示意图 (图中序号与正文公式序号对应。)
Fig.3 Definition schematic diagram of algal bloom (a) and sea ice (b) timing parameters (Sequence numbers in the diagram correspond to the equation numbers in the main text.)
参数类型 | 定义 | 环境参数 | 贡献率百分比/% | |
---|---|---|---|---|
宇航员海 | 迪尔维尔海 | |||
常规单一时刻 环境参数 | 混合层深度(MLD) | d/m | 11.5 | 16.5 |
海面温度(SST) | θ/℃ | 1.9 | 8.3 | |
叶绿素质量浓度(CHL) | ρ/(mg·m-3) | 7.2 | 15.3 | |
海冰密集度(SIC) | C/‰ | 0.0 | 2.0 | |
藻华与海冰 时序特征参数 | 无冰期持续时间 | tice-free/d | 12.4 | 7.6 |
藻华持续时间 | tBloomDur/d | 0.2 | 0.2 | |
藻华期间累积CHL | ρBloomInteg/(mg·m-3) | 12.4 | 0.6 | |
藻华期间CHL峰值 | ρBloomPeak/(mg·m-3) | 37.5 | 7.9 | |
南极磷虾出现与 时序特征参数时间差 | 南极磷虾出现时间距离海冰消退时间之间的天数 | tDATOR/d | 1.5 | 9.3 |
南极磷虾出现时间距离海冰生成时间之间的天数 | tDBTOA/d | 1.7 | 2.7 | |
南极磷虾出现时间距离藻华起始时间之间的天数 | tDABloomInit/d | 9.6 | 1.5 | |
南极磷虾出现时间距离藻华结束时间之间的天数 | tDBBloomTerm/d | 3.1 | 0.5 | |
南极磷虾出现时间距离藻华期间CHL达峰时间之间的天数 | tDABloomPeak/d | 1.1 | 27.7 |
表2 宇航员海与迪尔维尔海最大熵模型输入参数贡献率
Tab.2 Input parameters contribution in Maxent model for the Cosmonauts Sea and the D’Urville Sea
参数类型 | 定义 | 环境参数 | 贡献率百分比/% | |
---|---|---|---|---|
宇航员海 | 迪尔维尔海 | |||
常规单一时刻 环境参数 | 混合层深度(MLD) | d/m | 11.5 | 16.5 |
海面温度(SST) | θ/℃ | 1.9 | 8.3 | |
叶绿素质量浓度(CHL) | ρ/(mg·m-3) | 7.2 | 15.3 | |
海冰密集度(SIC) | C/‰ | 0.0 | 2.0 | |
藻华与海冰 时序特征参数 | 无冰期持续时间 | tice-free/d | 12.4 | 7.6 |
藻华持续时间 | tBloomDur/d | 0.2 | 0.2 | |
藻华期间累积CHL | ρBloomInteg/(mg·m-3) | 12.4 | 0.6 | |
藻华期间CHL峰值 | ρBloomPeak/(mg·m-3) | 37.5 | 7.9 | |
南极磷虾出现与 时序特征参数时间差 | 南极磷虾出现时间距离海冰消退时间之间的天数 | tDATOR/d | 1.5 | 9.3 |
南极磷虾出现时间距离海冰生成时间之间的天数 | tDBTOA/d | 1.7 | 2.7 | |
南极磷虾出现时间距离藻华起始时间之间的天数 | tDABloomInit/d | 9.6 | 1.5 | |
南极磷虾出现时间距离藻华结束时间之间的天数 | tDBBloomTerm/d | 3.1 | 0.5 | |
南极磷虾出现时间距离藻华期间CHL达峰时间之间的天数 | tDABloomPeak/d | 1.1 | 27.7 |
图4 宇航员海和迪尔维尔海夏季气候态环境参数分布 (a~h)及与南极磷虾出现记录匹配的单一时刻环境参数的数据分布密度图(i~p)
Fig.4 Data distribution of climatology environmental parameters during austral summer (a-h) and kernal density of Antarctic krill presence matched single-moment environmental parameters (i-p) in the Cosmonauts Sea and the D’Urville Sea
图5 宇航员海和迪尔维尔海与南极磷虾出现记录匹配的时序特征参数的数据分布密度图
Fig.5 Kernel density of Antarctic krill presence matched timing parameters in the Cosmonauts Sea and the D’Urville Sea
图6 1997—2019年宇航员海(a)和迪尔维尔海(b)沿岸及开阔大洋感兴趣区域南极磷虾年内首次出现时间的年际变化图 (感兴趣区域选取见图1。)
Fig.6 Interannual variation of Antarctic krill first appearance dates of the regions of interest (ROIs) in the coastal area and open ocean of the Cosmonauts Sea (a) and the D’Urville Sea (b) from 1997 to 2019 (Range of ROIs can be seen in Fig.1.)
图7 1997—2019年宇航员海(a)和迪尔维尔海(b)沿岸及开阔大洋感兴趣区域南极磷虾出现总天数年际变化图 (感兴趣区域选取见图1。)
Fig.7 Interannual variation of Antarctic krill total present days of the regions of interest (ROIs) in the coastal area and open ocean of the Cosmonaut Sea (a) and the D’Urville Sea (b) from 1997 to 2019 (Range of ROIs can be seen in Fig.1.)
图8 1997—2019年宇航员海感兴趣区域建模环境参数年际变化折线图 (蓝线表示开阔大洋区域,红线表示沿岸区域,虚线为通过显著性检验的趋势线(p<0.1)。感兴趣区域位置见图1。)
Fig.8 Interannual variation of modeling environmental parameters of ROIs in the Cosmonauts Sea from 1997 to 2019 (Blue line represents open ocean and red line represents coastal area. The dashed line represents the trend line that has passed the significance test (p<0.1). Range of ROIs can be seen in Fig.1.)
图9 1997—2019年迪尔维尔海感兴趣区域主要建模环境参数年际变化折线图 (蓝线表示开阔大洋区域,红线表示沿岸区域,虚线为通过显著性检验的趋势线(p<0.1)。感兴趣区域位置见图1。建模环境参数SIC由于多为0值,不具有明显趋势特征,故在图中未画出。)
Fig.9 Interannual variation of main modeling environmental parameters of ROIs in the D’Urville Sea from 1997 to 2019 (Blue line represents open ocean and red line represents coastal area. The dashed line represents the trend line that has passed the significance test (p<0.1). Range of ROIs can be seen in Fig. 1. The modeling input parameter SIC is primarily comprised of zero values and does not exhibit significant trend characteristics, therefore, it is not plotted.)
[1] | CROXALL J P, REID K, PRINCE P A. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill[J]. Marine Ecology Progress Series, 1999, 177: 115-131. |
[2] | TRATHAN P N, HILL S L. The importance of krill predation in the Southern Ocean[M]//SIEGEL V. Biology and ecology of Antarctic krill. Cham: Springer International Publishing, 2016: 321-350. |
[3] |
CAVAN E L, BELCHER A, ATKINSON A, et al. The importance of Antarctic krill in biogeochemical cycles[J]. Nature Communications, 2019, 10(1): 4742.
DOI PMID |
[4] | KAWAGUCHI S, ISHIDA A, KING R, et al. Risk maps for Antarctic krill under projected Southern Ocean acidification[J]. Nature Climate Change, 2013, 3(9): 843-847. |
[5] | MEYER B, ATKINSON A, BERNARD K S, et al. Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation[J]. Communications Earth & Environment, 2020, 1: 28. |
[6] | SIEGEL V. Introducing Antarctic krill Euphausia superba Dana, 1850[M]//SIEGEL V. Biology and ecology of Antarctic krill. Cham: Springer International Publishing, 2016: 1-19. |
[7] | PIÑONES A, FEDOROV A V. Projected changes of Antarctic krill habitat by the end of the 21st century[J]. Geophysical Research Letters, 2016, 43(16): 8580-8589. |
[8] | THORPE S E, TARLING G A, MURPHY E J. Circumpolar patterns in Antarctic krill larval recruitment: An environ-mentally driven model[J]. Marine Ecology Progress Series, 2019, 613: 77-96. |
[9] | ATKINSON A, SHREEVE R S, HIRST A G, et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage[J]. Limnology and Oceanography, 2006, 51(2): 973-987. |
[10] | FLORES H, VAN FRANEKER J A, SIEGEL V, et al. The association of Antarctic krill Euphausia superba with the under-ice habitat[J]. PLoS One, 2012, 7(2): e31775. |
[11] | BROWN M, KAWAGUCHI S, CANDY S, et al. Temperature effects on the growth and maturation of Antarctic krill (Euphausia superba)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(7/8): 672-682. |
[12] | KAWAGUCHI S, CANDY S G, KING R, et al. Modelling growth of Antarctic krill. I. Growth trends with sex, length, season, and region[J]. Marine Ecology Progress Series, 2006, 306: 1-15. |
[13] | CANDY S G. Long-term trend in mean density of Antarctic krill (Euphausia superba) uncertain[J]. Annual Research & Review in Biology, 2021, 36(12): 27-43. |
[14] | TRATHAN P N, FIELDING S, WARWICK-EVANS V, et al. Seabird and seal responses to the physical environment and to spatio-temporal variation in the distribution and abundance of Antarctic krill at South Georgia, with implications for local fisheries management[J]. ICES Journal of Marine Science, 2022, 79(9): 2373-2388. |
[15] | 朱国平. 基于广义可加模型研究时间和环境因子对南极半岛北部南极磷虾渔场的影响[J]. 水产学报, 2012, 36(12):1863-1871. |
ZHU G P. Effects of temporal and environmental factors on the fishing ground of Antarctic krill (Euphausia superba) in the northern Antarctic Peninsula based on generalized additive model[J]. Journal of Fisheries of China, 2012, 36(12): 1863-1871. | |
[16] | TRATHAN P N, BRIERLEY A S, BRANDON M A, et al. Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia[J]. Fisheries Oceanography, 2003, 12(6): 569-583. |
[17] | MURASE H, KITAKADO T, HAKAMADA T, et al. Spatial distribution of Antarctic minke whales (Balaenoptera bona-erensis) in relation to spatial distributions of krill in the Ross Sea, Antarctica[J]. Fisheries Oceanography, 2013, 22(3): 154-173. |
[18] | LIN S Y, ZHAO L, FENG J L. Predicted changes in the distribution of Antarctic krill in the Cosmonaut Sea under future climate change scenarios[J]. Ecological Indicators, 2022, 142: 109234. |
[19] | FRIEDLAENDER A S, JOHNSTON D W, FRASER W R, et al. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(13/14/15/16): 1729-1740. |
[20] | NACHTSHEIM D A, JEROSCH K, HAGEN W, et al. Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent[J]. Polar Biology, 2017, 40(5): 961-976. |
[21] | BIBIK V, MASLENNIKOV V, PELEVIN A, et al. Distribu-tion of Euphausia Superba Dana in relation to environmental conditions in the Commonwealth and Cosmonaut Seas[M]//MAKAROV R R. Interdisciplinary investigations of the pelagic ecosystem in the Commonwealth and Cosmonauts Seas. Moscow: VNIRO Publishing, 1988: 109-125. |
[22] | BIBIK V, MASLENNIKOV V, PELEVIN A, et al. he current system and the distribution of waters of different modifications in the Cooperation and Cosmonaut Seas[M]//Interdisciplinary investigations of pelagic ecosystem in the Cooperation and Cosmonaut Seas. Moscow: VNIRO Publishing, 1988: 10-43. |
[23] | GEDDES J A, MOORE G W K. A climatology of sea ice embayments in the Cosmonaut Sea,Antarctica[J]. Geophysical Research Letters, 2007, 34(2): L02505. |
[24] | SWADLING K M, PENOT F, VALLET C, et al. Intera-nnual variability of zooplankton in the Dumont d’Urville sea (139°E—146°E), east Antarctica, 2004-2008[J]. Polar Science, 2011, 5(2): 118-33. |
[25] | MATHIOT P, JOURDAIN N C, BARNIER B, et al. Sensitivity of coastal polynyas and high-salinity shelf water production in the Ross Sea,Antarctica, to the atmospheric forcing[J]. Ocean Dynamics, 2012, 62: 701-723. |
[26] | GBIF occurrence download[DS/OL]. (2022-2-09) [2023-2-09]. https://doi.org/10.15468/dl.28z24e. |
[27] | CCAMLR. Precautionary catch limitation on Euphausia superba in Statistical Division 58.4.2[Z/OL]. [2023-2-09]. https://cm.ccamlr.org/en/measure-51-03-2008. |
[28] | HU L M, ZHANG Y, WANG Y Z, et al. Paleoproductivity and deep-sea oxygenation in Cosmonaut Sea since the last glacial maximum: Impact on atmospheric CO2[J]. Frontiers in Marine Science, 2023, 10: 1215048. |
[29] | HUANG B Y, LIU C Y, BANZON V, et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1[J]. Journal of Climate, 2021, 34(8): 2923-2939. |
[30] | FETTERER F, KNOWLES K, MEIER W N, et al. Sea ice index: version 3[DS/OL]. Boulder, Colorado USA: National Snow and Ice Data Center, 2017. [2023-2-09]. https://doi.org/10.7265/N5K072F8. |
[31] | SATHYENDRANATH S, JACKSON T, BROCKMANN C, et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data[DS/OL]. NERC EDS Centre for Environmental Data Analysis, 2021. https://climate.esa.int/en/projects/ocean-colour/data/. |
[32] | THOMALLA S J, NICHOLSON S A, RYAN-KEOGH T J, et al. Widespread changes in Southern Ocean phytoplankton blooms linked to climate drivers[J]. Nature Climate Change, 2023, 13(9): 975-984. |
[33] | RACAULT M F, SATHYENDRANATH S, PLATT T. Impact of missing data on the estimation of ecological indicators from satellite ocean-colour time-series[J]. Remote Sensing of Environment, 2014, 152: 15-28. |
[34] | STORTO A, MASINA S. C-GLORSv5: An improved multi-purpose global ocean eddy-permitting physical reanalysis[J]. Earth System Science Data, 2016, 8(2): 679-696. |
[35] | PHILLIPS S J, ANDERSON R P, DUDÍK M, et al. Opening the black box: An open-source release of Maxent[J]. Ecography, 2017, 40(7): 887-893. |
[36] | PHILLIPS S J, DUDÍK M, SCHAPIRE R E. A maximum entropy approach to species distribution modeling[C]// Proceedings of the twenty-first international conference on machine learning. [S.l.]: ACM, 2004: 83. |
[37] | FITHIAN W, HASTIE T. Finite-sample equivalence in statistical models for presence-only data[J]. The Annals of Applied Statistics, 2013, 7(4): 1917-1939. |
[38] | LOBO J M, JIMÉNEZ-VALVERDE A, REAL R. AUC: A misleading measure of the performance of predictive distribution models[J]. Global Ecology and Biogeography, 2008, 17(2): 145-151. |
[39] | PLATT T, FUENTES-YACO C, FRANK K T. Marine ecology: Spring algal bloom and larval fish survival[J]. Nature, 2003, 423(6938): 398-399. |
[40] | KOHLBACH D, LANGE B A, SCHAAFSMA F L, et al. Ice algae-produced carbon is critical for overwintering of Antarctic krill Euphausia superba[J]. Frontiers in Marine Science, 2017, 4: 310. |
[41] | FERREIRA A, BRITO A C, MENDES C R B, et al. OC4-SO: A new chlorophyll-a algorithm for the western Antarctic Peninsula using multi-sensor satellite data[J]. Remote Sensing, 2022, 14(5): 1052. |
[42] | SIEGEL V, WATKINS J L. Distribution, biomass and demography of Antarctic krill, Euphausia superba[M]//SIEGEL V. Biology and ecology of Antarctic krill. Cham: Springer International Publishing, 2016: 21-100. |
[43] | MARRARI M, DALY K L, HU C M. Spatial and temporal variability of SeaWiFS chlorophyll a distributions west of the Antarctic Peninsula: Implications for krill production[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(3/4): 377-392. |
[44] | SCHMIDTKO S, STRAMMA L, VISBECK M. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 2017, 542(7641): 335-339. |
[45] |
LEVIN L A. Manifestation, drivers, and emergence of open ocean deoxygenation[J]. Annual Review of Marine Science, 2018, 10: 229-260.
DOI PMID |
[46] | PEZZA A B, RASHID H A, SIMMONDS I. Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO[J]. Climate Dynamics, 2012, 38(1): 57-73. |
[47] | LIMPASUVAN V, HARTMANN D L. Eddies and the annular modes of climate variability[J]. Geophysical Research Letters, 1999, 26(20): 3133-3136. |
[48] | MACKINTOSH A N, ANDERSON B M, LORREY A M, et al. Regional cooling caused recent New Zealand glacier advances in a period of global warming[J]. Nature Commu-nications, 2017, 8: 14202. |
[49] | GREENE C A, BLANKENSHIP D D, GWYTHER D E, et al. Wind causes Totten Ice Shelf melt and acceleration[J]. Science Advances, 2017, 3(11): e1701681. |
[50] | GREAVES B L, DAVIDSON A T, FRASER A D, et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean[J]. Biogeosciences, 2020, 17(14): 3815-3835. |
[51] | SALLÉE J B, SPEER K G, RINTOUL S R. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode[J]. Nature Geoscience, 2010, 3(4): 273-279. |
[1] | 刘悦宁, 龚芳, 何贤强, 金旭晨. CODMn入海通量长时序演变:瓯江遥感影像光谱信息反演[J]. 海洋学研究, 2023, 41(1): 45-54. |
[2] | 田芳妍, 何贤强, 朱伯仲, 龚芳, 朱乾坤. 考虑潮位校正的乐清湾潮滩面积近30年变化遥感研究[J]. 海洋学研究, 2023, 41(1): 68-81. |
[3] | 刘婷宇, 白雁, 朱伯仲, 李腾, 龚芳. 高空间分辨率海表CO2分压的卫星遥感反演算法:机器学习在秋季象山港的应用[J]. 海洋学研究, 2023, 41(1): 82-95. |
[4] | 陆霭莹, 李鹏, 朱海天, 陈鹏, 赵益智. 基于多源卫星遥感的渤海海上油气平台识别[J]. 海洋学研究, 2022, 40(4): 82-89. |
[5] | 熊一璇, 麻书畅, 张霄宇, 黄国容, 陈嘉星, 韩亚超. 基于多源遥感数据的大襟岛海域叶绿素a反演及富营养化评价[J]. 海洋学研究, 2021, 39(2): 43-51. |
[6] | 蒋锦刚, 冯慧云, 张亚国, 何贤强. 空间变异对海洋叶绿素a质量浓度遥感产品精度验证的影响[J]. 海洋学研究, 2021, 39(1): 9-19. |
[7] | 李程, 李欢, 王慧, 高佳, 王国松, 董军兴, 潘嵩, 刘克修. 1509号台风灿鸿期间“朱家尖-嵊山”高频地波雷达数据分析[J]. 海洋学研究, 2017, 35(1): 41-46. |
[8] | 裘沙怡, 梁楚进, 董昌明, 刘正礼. 南海海面风、浪场时空变化特征及其关系分析[J]. 海洋学研究, 2013, 31(4): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||