海洋学研究 ›› 2024, Vol. 42 ›› Issue (4): 70-82.DOI: 10.3969/j.issn.1001-909X.2024.04.007
收稿日期:
2023-06-12
修回日期:
2023-06-27
出版日期:
2024-12-15
发布日期:
2025-02-08
通讯作者:
韩喜球
作者简介:
*韩喜球(1969—),女,研究员,主要从事海洋地质方面的研究,E-mail:xqhan@sio.org.cn。基金资助:
YE Shengyuan1,2(), HAN Xiqiu1,2,*(
), LI Honglin1,2
Received:
2023-06-12
Revised:
2023-06-27
Online:
2024-12-15
Published:
2025-02-08
Contact:
HAN Xiqiu
摘要:
洋中脊的地形地貌特征直接受构造运动和岩浆活动控制,对其进行研究可以了解洋中脊的构造演化历史和岩浆作用过程,对于海底矿产资源的勘探具有重要意义。本文利用中国大洋24航次采集的船载多波束声呐数据,用定量分析的方法对西北印度洋卡尔斯伯格脊61°24'E—61°48'E段的地形地貌特征开展研究,计算了岩浆侵入比及断层相关指数,并探讨了研究区的岩浆-构造意义,获得了以下认识:1)研究区可划分为A、B、C、D四个二级洋中脊段,其岩浆-构造活动期间隔分别为0.15、0.50、0.70和0.21 Ma。2)洋中脊A段和B段为不对称扩张段,岩浆贫乏,以构造作用为主,处于构造活动期;洋中脊C段为对称扩张段,岩浆较为充足,以岩浆作用为主,处于轴向火山脊构建期;洋中脊D段为对称扩张段,岩浆贫乏,以构造作用为主,处于构造活动期。3)在洋中脊段两侧断层核密度值高的区域,有可能形成热液活动区,将是未来进一步勘探的目标区域。
中图分类号:
叶盛源, 韩喜球, 李洪林. 西北印度洋卡尔斯伯格脊61°24'E—61°48'E段的构造地貌及岩浆-构造活动性[J]. 海洋学研究, 2024, 42(4): 70-82.
YE Shengyuan, HAN Xiqiu, LI Honglin. The tectonic geomorphology and magmatic-tectonic activity in the 61°24'E-61°48'E segment of the Carlsberg Ridge in the Northwest Indian Ocean[J]. Journal of Marine Sciences, 2024, 42(4): 70-82.
图1 研究区地形图 (水深数据来源于中国大洋24航次;投影方式为高斯-克吕格;地形分辨率为50 m;右上角的小地图为印度洋洋中脊分布图,图中的红线为洋中脊线,黄线为板块边界,红色五角星为研究区位置。)
Fig.1 Topographic map of the study area (The bathymetric data are sourced from the DY24 Cruise. The projection method is Gauss-Kruger. The grid resolution is 50 m. The small globe map in the upper right corner is the distribution map of Indian Ocean ridges, the red line in the map is the mid-ocean ridge line, the yellow line is the plate boundary, and the red five-pointed star is the location of the study area.)
名称 | 脊段 长度 /km | 轴部 裂谷 宽度/km | 最大 水深/m | 轴部 裂谷 高度/m | AVR 高度/m | 轴部裂谷 高宽比/ (×10-3) |
---|---|---|---|---|---|---|
洋中脊A段 | 14.0 | 4 075 | ||||
剖面1 | 13.6 | 4 068 | 900 | 130 | 66.2 | |
剖面2 | 10.3 | 3 952 | 801 | 163 | 77.8 | |
剖面3 | 9.5 | 3 460 | 683 | 280 | 71.9 | |
剖面4 | 8.9 | 3 901 | 860 | 112 | 96.6 | |
洋中脊B段 | 40.0 | 4 175 | ||||
剖面5 | 9.5 | 4 087 | 884 | 405 | 93.1 | |
剖面6 | 9.1 | 4 148 | 1 313 | 685 | 144.3 | |
剖面7 | 10.4 | 3 980 | 1 467 | 667 | 141.1 | |
剖面8 | 9.5 | 3 556 | 1 012 | 528 | 106.5 | |
剖面9 | 10.2 | 3 548 | 1 004 | 322 | 98.4 | |
剖面10 | 9.8 | 3 700 | 1 102 | 500 | 112.4 | |
剖面11 | 9.7 | 3 972 | 1 148 | 580 | 118.4 | |
剖面12 | 9.8 | 3 957 | 1 617 | 451 | 165.0 | |
剖面13 | 9.4 | 4 016 | 1 673 | 251 | 178.0 | |
剖面14 | 8.9 | 3 947 | 1 340 | 220 | 150.6 | |
洋中脊C段 | 21.0 | 4 370 | ||||
剖面17 | 16.9 | 4 343 | 1 013 | 306 | 59.9 | |
剖面18 | 15.5 | 4 125 | 1 092 | 461 | 70.5 | |
剖面19 | 13.8 | 4 141 | 1 197 | 603 | 86.7 | |
剖面20 | 14.6 | 4 087 | 957 | 660 | 65.5 | |
剖面21 | 13.7 | 4 028 | 697 | 832 | 50.9 | |
洋中脊D段 | 17.5 | 3 920 | ||||
剖面22 | 20.9 | 3 845 | 1 429 | 275 | 68.4 | |
剖面23 | 20.5 | 3 782 | 996 | 391 | 48.6 | |
剖面24 | 15.4 | 3 648 | 953 | 202 | 61.9 | |
剖面25 | 14.8 | 3712 | 643 | 258 | 43.4 |
表1 洋中脊A、B、C和D段的形态和一些重要构造特征参数
Tab.2 Morphology and some important structural feature data of mid-ocean ridge segments A, B, C and D
名称 | 脊段 长度 /km | 轴部 裂谷 宽度/km | 最大 水深/m | 轴部 裂谷 高度/m | AVR 高度/m | 轴部裂谷 高宽比/ (×10-3) |
---|---|---|---|---|---|---|
洋中脊A段 | 14.0 | 4 075 | ||||
剖面1 | 13.6 | 4 068 | 900 | 130 | 66.2 | |
剖面2 | 10.3 | 3 952 | 801 | 163 | 77.8 | |
剖面3 | 9.5 | 3 460 | 683 | 280 | 71.9 | |
剖面4 | 8.9 | 3 901 | 860 | 112 | 96.6 | |
洋中脊B段 | 40.0 | 4 175 | ||||
剖面5 | 9.5 | 4 087 | 884 | 405 | 93.1 | |
剖面6 | 9.1 | 4 148 | 1 313 | 685 | 144.3 | |
剖面7 | 10.4 | 3 980 | 1 467 | 667 | 141.1 | |
剖面8 | 9.5 | 3 556 | 1 012 | 528 | 106.5 | |
剖面9 | 10.2 | 3 548 | 1 004 | 322 | 98.4 | |
剖面10 | 9.8 | 3 700 | 1 102 | 500 | 112.4 | |
剖面11 | 9.7 | 3 972 | 1 148 | 580 | 118.4 | |
剖面12 | 9.8 | 3 957 | 1 617 | 451 | 165.0 | |
剖面13 | 9.4 | 4 016 | 1 673 | 251 | 178.0 | |
剖面14 | 8.9 | 3 947 | 1 340 | 220 | 150.6 | |
洋中脊C段 | 21.0 | 4 370 | ||||
剖面17 | 16.9 | 4 343 | 1 013 | 306 | 59.9 | |
剖面18 | 15.5 | 4 125 | 1 092 | 461 | 70.5 | |
剖面19 | 13.8 | 4 141 | 1 197 | 603 | 86.7 | |
剖面20 | 14.6 | 4 087 | 957 | 660 | 65.5 | |
剖面21 | 13.7 | 4 028 | 697 | 832 | 50.9 | |
洋中脊D段 | 17.5 | 3 920 | ||||
剖面22 | 20.9 | 3 845 | 1 429 | 275 | 68.4 | |
剖面23 | 20.5 | 3 782 | 996 | 391 | 48.6 | |
剖面24 | 15.4 | 3 648 | 953 | 202 | 61.9 | |
剖面25 | 14.8 | 3712 | 643 | 258 | 43.4 |
[1] | MURTON B J, BAKER E T, SANDS C M, et al. Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean[J]. Geophysical Research Letters, 2006, 33(10): L10608. |
[2] | HARRIS P T, MACMILLAN-LAWLER M, RUPP J, et al. Geomorphology of the oceans[J]. Marine Geology, 2014, 352: 4-24. |
[3] | MENDEL V, SAUTER D, ROMMEVAUX-JESTIN C, et al. Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(5): 9102. |
[4] | YEO I, SEARLE R C, ACHENBACH K L, et al. Eruptive hummocks: Building blocks of the upper ocean crust[J]. Geology, 2012, 40(1): 91-94. |
[5] | KAMESH RAJU K A, CHAUBEY A K, AMARNATH D, et al. Morphotectonics of the Carlsberg Ridge between 62°20' and 66°20'E, northwest Indian Ocean[J]. Marine Geology, 2008, 252(3/4): 120-128. |
[6] | HARRIS P T, WHITEWAY T. High seas marine protected areas: Benthic environmental conservation priorities from a GIS analysis of global ocean biophysical data[J]. Ocean & Coastal Management, 2009, 52(1): 22-38. |
[7] | TUCHOLKE B E, LIN J. A geological model for the structure of ridge segments in slow spreading ocean crust[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11937-11958. |
[8] | 韩喜球, 吴招才, 裘碧波. 西北印度洋 Carlsberg脊的分段性及其构造地貌特征——中国大洋24航次调查成果介绍[R]// 深海研究与地球系统科学学术研讨会, 2012. |
HAN X Q, WU Z C, QIU B B. The segmentation of the Carlsberg Ridge in the Northwest Indian Ocean and its tectonic and geomorphologic characteristics—Introduction to China Oceans 24 Cruise Survey results[R]// Deep sea research and earth system science conference, 2012. | |
[9] |
杨驰, 韩喜球, 王叶剑, 等. 卡尔斯伯格脊60°—61°E洋脊段多波束后向散射特征及其对构造与岩浆作用强度的指示[J]. 海洋学研究, 2018, 36(3):37-49.
DOI |
YANG C, HAN X Q, WANG Y J, et al. Characteristics of the multibeam backscatter of Carlsberg Ridge(60°-61°E)and its indication on the tectonism and magmatism[J]. Journal of Marine Sciences, 2018, 36(3): 37-49.
DOI |
|
[10] | 余星, 韩喜球, 邱中炎, 等. 西北印度洋脊的厘定及其地质构造特征[J]. 地球科学, 2019, 44(2):626-639. |
YU X, HAN X Q, QIU Z Y, et al. Definition of northwest Indian ridge and its geologic and tectonic signatures[J]. Earth Science, 2019, 44(2): 626-639. | |
[11] | WANG Y J, HAN X Q, ZHOU Y D, et al. The Daxi Vent Field: An active mafic-hosted hydrothermal system at a non-transform offset on the slow-spreading Carlsberg Ridge, 6°48’N[J]. Ore Geology Reviews, 2021, 129: 103888. |
[12] | 李洪林, 李江海, 王洪浩, 等. 海洋核杂岩形成机制及其热液硫化物成矿意义[J]. 海洋地质与第四纪地质, 2014, 34(2):53-59. |
LI H L, LI J H, WANG H H, et al. Formation mechanism of oceanic core complex and its significance to the mineralization of hydrothermal sulfide[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 53-59. | |
[13] | 余星, 初凤友, 董彦辉, 等. 拆离断层与大洋核杂岩:一种新的海底扩张模式[J]. 地球科学, 2013, 38(5):995-1004. |
YU X, CHU F Y, DONG Y H, et al. Detachment fault and oceanic core complex: A new mode of seafloor spreading[J]. Earth Science, 2013, 38(5): 995-1004. | |
[14] | 杨驰. 卡尔斯伯格脊 60°E-61°E洋脊段地形地貌特征——基于多波束资料的分析[D]. 杭州: 自然资源部第二海洋研究所, 2018. |
YANG C. Topographic and geomorphologic characteristics of the 60°E-61°E ridge section of the Carlsberg Ridge—an analysis based on multibeam data[D]. Hangzhou: Second Institute of Oceanography, MNR, 2018. | |
[15] | KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Chemical Metallurgical & Mining Society of South Africa, 1951, 52(6): 119-139. |
[16] | MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963, 58(8): 1246-1266. |
[17] | WESSEL P, SMITH W H F, SCHARROO R, et al. Generic mapping tools: Improved version released[J]. Eos, Tran-sactions American Geophysical Union, 2013, 94(45): 409-410. |
[18] | HOWELL S M, ITO G, BEHN M D, et al. Magmatic and tectonic extension at the Chile Ridge: Evidence for mantle controls on ridge segmentation[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2354-2373. |
[19] | ANDERSON M O, CHADWICK JR W W, HANNINGTON M D, et al. Geological interpretation of volcanism and seg-mentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 2240-2274. |
[20] | O’CALLAGHAN J F, MARK D M. The extraction of drainage networks from digital elevation data[J]. Computer Vision, Graphics, and Image Processing, 1984, 28(3): 323-344. |
[21] | XU Y C, CHEN N H, TAO C H, et al. Magmato-tectonic mechanism of Southwest Indian Ridge (49°-50°E) inferred from quantitative morphotectonic analysis based on high-resolution multibeam bathymetry[J]. Marine Geology, 2021, 434: 106421. |
[22] | 党牛, 余星, 韩喜球, 等. 基于海底DEM的洋中脊火山锥自动识别方法研究[J]. 海洋学研究, 2021, 39(3):12-20. |
DANG N, YU X, HAN X Q, et al. Automatic recognition of volcanic cones at mid-ocean ridges based on the seabed DEM data[J]. Journal of Marine Sciences, 2021, 39(3): 12-20.
DOI |
|
[23] | 陈强. 高级计量经济学及Stata应用[M]. 北京: 高等教育出版社, 2010. |
CHEN Q. Advanced econometrics and Stata application[M]. Beijing: Higher Education Press, 2010. | |
[24] | SILVERMAN B W. Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986. |
[25] |
刘守金, 林间, 罗怡鸣. 东南印度洋中脊(108°—134°E区域)断层构造与岩浆活动关系[J]. 热带海洋学报, 2019, 38(4):70-80.
DOI |
LIU S J, LIN J, LUO Y M. Variations in tectonic faulting and magmatism at the southeast Indian ridge at 108°-134°E[J]. Journal of Tropical Oceanography, 2019, 38(4): 70-80.
DOI |
|
[26] | DEMETS C, GORDON R G, ARGUS D F. Geologically current plate motions[J]. Geophysical Journal International, 2010, 181(1): 1-80. |
[27] | ARGUS D F, GORDON R G, DEMETS C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(11): Q11001. |
[28] | KLISCHIES M, PETERSEN S, DEVEY C W. Geological mapping of the Menez Gwen segment at 37°50’N on the Mid-Atlantic Ridge: Implications for accretion mechanisms and associated hydrothermal activity at slow-spreading mid-ocean ridges[J]. Marine Geology, 2019, 412: 107-122. |
[29] | 范庆凯. 超慢速洋中脊构造特征及热液驱动机制:以西南印度洋中脊49°—52°E为例[D]. 北京: 北京大学, 2020. |
FAN Q K. Characteristics of ultra-slow spreading ridge and hydrothermal driving mechanism: Taking the Southwest Indian Ridge 49°-52°E as an example[D]. Beijing: Peking University, 2020. |
[1] | 唐玲, 杨木壮, 王银霞, 高杨, 田松, 董迪. 粤港澳大湾区海岛空间分布特征探析[J]. 海洋学研究, 2020, 38(2): 74-80. |
[2] | 张志毅, 许冬, 韩喜彬, 王雁冰, 胡智龙, 葛倩, 阳凡林. 雅浦-马里亚纳海沟附近海域的精细地貌特征研究[J]. 海洋学研究, 2020, 38(1): 27-41. |
[3] | 杨驰, 韩喜球, 王叶剑, 李洪林, 邱中炎, 吴招才. 卡尔斯伯格脊 60°~61°E洋脊段多波束后向散射特征及其对构造与岩浆作用强度的指示[J]. 海洋学研究, 2018, 36(3): 37-49. |
[4] | 蒋紫靖, 韩喜球, 王叶剑, 邱中炎. 印度洋卡尔斯伯格脊6°48′N附近热液羽状流水化学参数异常和颗粒物成分特征[J]. 海洋学研究, 2017, 35(4): 34-43. |
[5] | 黄凯晖, 韩喜球, 王叶剑, 邱中炎, 李洪林. 印度洋亚丁-欧文-卡尔斯伯格脊三联点邻近洋脊的玄武岩地球化学特征及其地幔源区性质[J]. 海洋学研究, 2017, 35(4): 44-60. |
[6] | 赵东洋, 雷利元, 尤广然, 刘明, 席小慧, 毕远溥. 基于GIS和洛伦兹曲线的辽宁省海岛空间分布特征探析[J]. 海洋学研究, 2017, 35(1): 73-79. |
[7] | 胡昊, 许冬, 龙江平, 周勐佳, 唐博, 金路. 北部湾海底沉积物稀土元素与影响因子关系的BP神经网络定量分析[J]. 海洋学研究, 2016, 34(1): 18-26. |
[8] | 袁麒翔, 李加林, 徐谅慧, 陈鹏程, 王明月. 象山港流域河流形态特征定量分析[J]. 海洋学研究, 2014, 32(3): 50-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||