基于浮标数据评估三阶Stokes波的非线性海浪谱

贺超超, 王子韵, 蔡烽, 王海丽, 王锦, 刘雨立, 董昌明

海洋学研究 ›› 2025, Vol. 43 ›› Issue (3) : 11-20.

PDF(3556 KB)
PDF(3556 KB)
海洋学研究 ›› 2025, Vol. 43 ›› Issue (3) : 11-20. DOI: 10.3969/j.issn.1001-909X.2025.03.002
研究论文

基于浮标数据评估三阶Stokes波的非线性海浪谱

作者信息 +

Evaluation the nonlinear wave spectrum of third-order Stokes waves based on NDBC buoy data

Author information +
文章历史 +

摘要

海浪是海洋动力要素的关键组成部分,对海上航行与海上作业具有显著影响。利用海浪谱可以有效表征海浪能量在频率域上的统计分布特性。本文利用70个NDBC浮标站点的数据,分别基于JONSWAP谱与三阶Stokes波的非线性谱进行有效波高反演。结果表明,与JONSWAP谱反演结果相比,非线性谱的绝对误差和相对误差平均提升程度均超过10%,最大提升程度分别达到28.54%和22.29%,具有显著优势。非线性谱相对于JONSWAP谱的提升程度与有效波高、风速、风向与波向的夹角以及站点水深的关系表明:提升程度随有效波高增加而增加;风速越大,提升程度越大;夹角越小,提升程度越大,且风速对于提升程度的影响远大于夹角的影响;在水深500 m以浅,两种海浪谱的反演精度均高于500 m以深,但在500~5 500 m水深区间内,非线性谱的提升程度超过浅水区,存在线性增加趋势。

Abstract

Ocean waves are a fundamental component of marine dynamics, exerting significant impacts on maritime navigation and offshore operations. The wave spectrum provides an effective representation of the statistical distribution of wave energy across the frequency domain. In this study, observational data from 70 NDBC buoy stations were used to retrieve significant wave heights based on both the JONSWAP spectrum and the third-order Stokes nonlinear spectrum. Results show that, compared with the JONSWAP-based retrievals, the nonlinear spectrum achieves average improvements degree exceeding 10% in both absolute and relative errors, with maximum improvements degree of 28.54% and 22.29%, respectively, demonstrating the nonlinear spectrum’s clear advantages. Further analysis indicates that the performance degrees of the nonlinear spectrum are closely related to significant wave height, wind speed, the angle between wind and wave directions, and water depth. Specifically, the improvement degree increases with larger wave heights and stronger winds; smaller directional angle between wind and waves yields greater benefits, though wind speed exerts a much stronger influence than directional angle. In water depths shallower than 500 m, the inversion accuracies of both wave spectras are higher than those in depths deeper than 500 m. However, within the depth range of 500-5 500 m, the improvement degree in the nonlinear spectrum exceeds that in the shallow-water region, showing a linear increasing trend.

关键词

海浪谱 / 波高反演 / 非线性谱 / 三阶Stokes波 / JONSWAP谱 / NDBC浮标

Key words

wave spectrum / wave height retrieval / nonlinear spectrum / third-order Stokes wave / JONSWAP spectrum / NDBC buoy

引用本文

导出引用
贺超超, 王子韵, 蔡烽, . 基于浮标数据评估三阶Stokes波的非线性海浪谱[J]. 海洋学研究. 2025, 43(3): 11-20 https://doi.org/10.3969/j.issn.1001-909X.2025.03.002
HE Chaochao, WANG Ziyun, CAI Feng, et al. Evaluation the nonlinear wave spectrum of third-order Stokes waves based on NDBC buoy data[J]. Journal of Marine Sciences. 2025, 43(3): 11-20 https://doi.org/10.3969/j.issn.1001-909X.2025.03.002
中图分类号: P731.22   

参考文献

[1]
DURRANT T H, GREENSLADE D J M, SIMMONDS I. Validation of Jason-1 and envisat remotely sensed wave heights[J]. Journal of Atmospheric and Oceanic Tech-nology, 2009, 26(1): 123-134.
[2]
HELMREICH S. Reading a wave buoy[J]. Science, Technology, & Human Values, 2019, 44(5): 737-761.
[3]
LE ROUX J P. An extension of the Airy theory for linear waves into shallow water[J]. Coastal Engineering, 2008, 55(4): 295-301.
[4]
刘红军, 杨奇. 不同波浪理论下风机支撑系统的动力响应[J]. 哈尔滨工程大学学报, 2018, 39(4):668-673.
LIU H J, YANG Q. Dynamic response of wind turbine supporting system under different wave theories[J]. Journal of Harbin Engineering University, 2018, 39(4): 668-673.
[5]
STOKES G G. Supplement to a paper on the theory of oscillatory waves[M]//Mathematical and physical papers. Cambridge: Cambridge University Press, 1980: 197-229.
[6]
LONGUET-HIGGINS M S. The effect of non-linearities on statistical distributions in the theory of sea waves[J]. Journal of Fluid Mechanics, 1963, 17(3): 459-480.
[7]
HASSELMANN K, MUNK W, MACDONALD G J F. Bispectra of ocean waves[C]//Symposium on time series analysis. New York, 1963: 125-139.
[8]
PIERSON JR W J, MOSKOWITZ L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii[J]. Journal of Geophysical Research, 1964, 69(24): 5181-5190.
[9]
HASSELMANN K, BARNETT T P, BOUWS E, et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)[M]. [S.l.]: Deutschen Hydrographischen Zeitschrift, 1973.
[10]
HASSELMANN D E, DUNCKEL M, EWING J A. Directional wave spectra observed during JONSWAP 1973[J]. Journal of Physical Oceanography, 1980, 10(8): 1264-1280.
[11]
MITSUYASU H, TASAI F, SUHARA T, et al. Observation of the power spectrum of ocean waves using a cloverleaf buoy[J]. Journal of Physical Oceanography, 1980, 10(2): 286-296.
[12]
YOUNG I R. Observations of the spectra of hurricane generated waves[J]. Ocean Engineering, 1998, 25(4/5): 261-276.
[13]
GODA Y. A comparative review on the functional forms of directional wave spectrum[J]. Coastal Engineering Journal, 1999, 41(1): 1-20.
[14]
XIA W D, MA Y X, DONG G H. Numerical simulation of freak waves in random sea state[J]. Procedia Engineering, 2015, 116: 366-372.
[15]
ZOU L, WANG A M, WANG Z, et al. Experimental study of freak waves due to three-dimensional island terrain in random wave[J]. Acta Oceanologica Sinica, 2019, 38(6): 92-99.
[16]
沈正, 宋曙光, 王伟. 深水斯托克斯波的一种近似解析解[J]. 海洋学报, 1993, 15(3):7-13.
SHEN Z, SONG S G, WANG W. An approximate analytical solution of Stokes wave in deep water[J]. Acta Oceanologica Sinica, 1993, 15(3): 7-13.
[17]
薛亚东, 西文韬, 石爱国, 等. 基于三阶斯托克斯波的谱估计及海浪数值模拟研究[J]. 海洋科学, 2017, 41(6):92-97.
XUE Y D, XI W T, SHI A G, et al. Spectral estimation and numerical simulation based on third-order Stokes Waves[J]. Marine Sciences, 2017, 41(6): 92-97.
[18]
ZIEGER S, VINOTH J, YOUNG I R. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(12): 2549-2564.
[19]
WANG J C, ZHANG J, YANG J G. The validation of HY-2 altimeter measurements of a significant wave height based on buoy data[J]. Acta Oceanologica Sinica, 2013, 32(11): 87-90.
[20]
CHEN C T, ZHU J H, LIN M S, et al. The validation of the significant wave height product of HY-2 altimeter-primary results[J]. Acta Oceanologica Sinica, 2013, 32(11): 82-86.
[21]
SHAEB K H B, ANAND A, JOSHI A K, et al. Compa-rison of near coastal significant wave height measurements from SARAL/AltiKa with wave rider buoys in the Indian Region[J]. Marine Geodesy, 2015, 38(sup1): 422-436.
[22]
YE J, WAN Y, DAI Y S. Quality evaluation and calibra-tion of the SWIM significant wave height product with buoy data[J]. Acta Oceanologica Sinica, 2021, 40(10): 187-196.
[23]
WANG Y H, WANG D X, DONG S. Theoretical study on arranging heaving wave energy converters in front of jarlan-type breakwater[J]. Ocean Engineering, 2022, 248: 110850.
[24]
HSU J R C, TSUCHIYA Y, SILVESTER R. Third-order approximation to short-crested waves[J]. Journal of Fluid Mechanics, 1979, 90(1): 179-196.
[25]
SONG Z Y, ZHAO H J, LI L, et al. On the universal third order Stokes wave solution[J]. Science China Earth Sciences, 2013, 56(1): 102-114.
[26]
TSUCHIYA Y, YASUDA T. A new approach to Stokes wave theory[J]. Bulletin of the Disaster Prevention Research Institute, 1981, 31(1): 17-34.
[27]
ZHAO K F, LIU P L. On Stokes wave solutions[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478(2258): 20210732.
[28]
YANG J G, ZHANG J. Validation of sentinel-3A/3B satellite altimetry wave heights with buoy and Jason-3 data[J]. Sensors, 2019, 19(13): 2914.

基金

国家自然科学基金(42376018)
南方海洋科学与工程广东实验室(珠海)自主科研项目(2201062100101)

PDF(3556 KB)

Accesses

Citation

Detail

段落导航
相关文章

/