基于沉积物收支平衡理论的潮滩冲淤变化分析:以江苏大丰潮滩为例

雷思, 朱士兵, 张一乙, 李明亮, 汪亚平, 高超, 吴自银, 高抒, 周洁琼

海洋学研究 ›› 2025, Vol. 43 ›› Issue (3) : 40-48.

PDF(3562 KB)
PDF(3562 KB)
海洋学研究 ›› 2025, Vol. 43 ›› Issue (3) : 40-48. DOI: 10.3969/j.issn.1001-909X.2025.03.005
研究论文

基于沉积物收支平衡理论的潮滩冲淤变化分析:以江苏大丰潮滩为例

作者信息 +

Analysis of tidal flat erosion and deposition changes with sediment budget: A case study of Dafeng tidal flat on the Jiangsu coast

Author information +
文章历史 +

摘要

准确评估潮滩冲淤动态对于海岸带资源管理与防灾减灾至关重要。然而,受人工岸线固化和潮滩剖面演变的时滞效应的影响,传统的基于岸线变迁的方法在评估潮滩形态和动力方面往往存在较大不确定性,对其中内在机制的解析也较为不足。本研究于2021年5月在江苏海岸的大丰潮滩的上、中、下潮间带进行了连续19个潮周期的同步水文-沉积-地貌动态测量。通过构建沉积物质量守恒模型,定量分析了观测期内沉积物的输运过程及其与潮滩地貌动态变化的关联。结果表明,基于沉积物收支关系估算的滩面冲淤变化与实测高程变化基本一致,验证了该方法在刻画潮滩地貌动态变化方面的有效性。此外,分析结果还表明高能动力(如大潮、强风浪)是潮滩侵蚀的主要驱动力。本研究可为潮滩地貌过程研究与科学管理提供新的实证依据与方法支持。

Abstract

Accurate assessment of tidal flat erosion and deposition dynamics is very important for coastal zone resource management and disaster prevention and mitigation. However, due to the solidification of artificial shorelines and the time-lag effect of tidal flat profile evolution, the methods based on shoreline transition often have great uncertainty in evaluating tidal flat morphology and dynamics, and the analysis of the internal mechanism is also relatively insufficient. In this study, synchronous hydrological-sedimentary-geomorphological dynamic measurements were carried out for 19 consecutive tidal cycles in the upper, middle and lower intertidal zones on the Dafeng tidal flat on the coast of Jiangsu in May 2021. A sediment conservation model was constructed to quantitatively analyze the transport process of sediments during the observation period and its relationship with the dynamic changes of tidal flat landforms. The results show that the erosion and deposition changes estimated based on sediment budget are basically consistent with the measured elevation changes, which verifies the effectiveness of this method in describing the tidal flat landform dynamics. In addition, the analysis also shows that high energy dynamics (such as spring tide and strong wind wave) are the main driving forces of tidal flat erosion. This study can provide a new empirical basis and method support for the research and scientific management of tidal flat landform process.

关键词

潮滩环境 / 沉积物质量守恒 / 沉积物收支关系 / 冲淤机制 / 大丰潮滩

Key words

tidal flat environment / conservation of sediment / sediment budget relationship / erosion and deposition mechanism / Dafeng tidal flat

引用本文

导出引用
雷思, 朱士兵, 张一乙, . 基于沉积物收支平衡理论的潮滩冲淤变化分析:以江苏大丰潮滩为例[J]. 海洋学研究. 2025, 43(3): 40-48 https://doi.org/10.3969/j.issn.1001-909X.2025.03.005
LEI Si, ZHU Shibing, ZHANG Yiyi, et al. Analysis of tidal flat erosion and deposition changes with sediment budget: A case study of Dafeng tidal flat on the Jiangsu coast[J]. Journal of Marine Sciences. 2025, 43(3): 40-48 https://doi.org/10.3969/j.issn.1001-909X.2025.03.005
中图分类号: P737.1   

参考文献

[1]
王颖, 朱大奎. 中国的潮滩[J]. 第四纪研究, 1990, 10(4):291-300.
WANG Y, ZHU D K. Tidal flats of China[J]. Quaternary Sciences, 1990, 10(4): 291-300.
[2]
汪亚平, 贾建军, 杨阳, 等. 长江三角洲蓝图重绘的基础科学问题:进展与未来研究[J]. 海洋科学, 2019, 43(10):2-12.
WANG Y P, JIA J J, YANG Y, et al. Fundamental scientific issues for the Changjiang River delta associated with the new blueprint of future development: Overview and prospect[J]. Marine Sciences, 2019, 43(10): 2-12.
[3]
高抒. 河口海岸状态生变,重绘蓝图势在必行[J]. 世界科学, 2019(1):29-31.
GAO S. The state of estuaries and coasts has changed, so it is imperative to redraw the blueprint[J]. World Science, 2019(1): 29-31.
[4]
章志, 刘宪光, 周凯, 等. 海岸侵蚀脆弱性及驱动因子分析:以江苏中部海岸为例[J]. 海洋学研究, 2023, 41(4):70-83.
摘要
海岸侵蚀导致土地流失,严重威胁人民生命财产安全,识别海岸侵蚀脆弱性对于防灾减灾意义重大。从海岸动力、海岸形态和社会经济三个方面构建评价指标体系,利用数字化海岸线分析系统(digital shoreline analysis system,DSAS)和遥感数据,采用断面法将海岸离散为等间距的评价单元,基于熵权法确定评价指标权重、等级并计算海岸侵蚀脆弱性,利用地理探测器识别海岸侵蚀脆弱性的空间分异和影响因素。结果表明:江苏中部海岸侵蚀脆弱性为极高脆弱、高脆弱、中脆弱、低脆弱和极低脆弱的比例分别为5.60%、15.80%、30.93%、24.21%和23.46%,海岸侵蚀脆弱性总体呈现北高南低的分布趋势,其中为极脆弱的区域主要位于中山河口—射阳河口之间的海岸区域。江苏中部海岸侵蚀脆弱性的空间分异是海岸动力、海岸形态、社会经济多重因素协同作用的结果,其中潮滩坡度、地表覆盖类型、平均潮差、海岸线变化速率是海岸侵蚀脆弱性空间分异的主导因子。
ZHANG Z, LIU X G, ZHOU K, et al. Vulnerability and driving factors of coastal erosion: A case study of the central coast of Jiangsu[J]. Journal of Marine Sciences, 2023, 41(4): 70-83.

Coastal erosion leads to land loss and seriously threatens people’s life and property safety. It is great significant to identify coastal erosion vulnerability for disaster prevention and mitigation. The evaluation index system was constructed from three aspects: coastal dynamics, coastal morphology and social economy. Using the DSAS model and remote sensing data, the coast was discretized into equally spaced units based on section method, the weight and grade of the evaluation index were determined based on the entropy weight method, the coastal erosion vulnerability in the study area was calculated, and the spatial differentiation and influencing factors of coastal erosion vulnerability were identified by geographic detector. The results showed that the proportions of coastal erosion vulnerability for extremely high vulnerability, high vulnerability, medium vulnerability, low vulnerability and extremely low vulnerability in central coast of Jiangsu were 5.60%, 15.80%, 30.93%, 24.21%, and 23.46%, respectively, that showed a decreasing trend from north to south. The extremely vulnerable areas of coastal erosion were mainly located in the coastal area between the Zhongshan Estuary and the Sheyang Estuary. The spatial differentiation of coastal erosion vulnerability in central Jiangsu was the result of the synergistic effect of multiple factors such as coastal dynamics, coastal morphology, and economic and social activities. Among them, tidal slope, land cover, average tidal range, and coastline change rate were the dominant factors for the spatial differentiation of coastal erosion vulnerability.

[5]
刘燕春, 张鹰. 基于遥感岸线识别技术的射阳河口潮滩冲淤演变研究[J]. 海洋通报, 2010, 29(6):658-663.
LIU Y C, ZHANG Y. Study on the tidal flat evolution through changes of coastline and beach line of Sheyang River estuary by the remote sensing[J]. Marine Science Bulletin, 2010, 29(6): 658-663.
[6]
刘莹, 张卫国, 杨世伦, 等. 杭州湾北岸芦潮港潮滩沉积物磁性特征的年际变化及其粒度控制[J]. 沉积学报, 2012, 30(3):547-555.
LIU Y, ZHANG W G, YANG S L, et al. Annual variations in magnetic properties of tidal flat sediments from Luchaogang along the northern bank of the Hangzhou Bay and its response to particle size change[J]. Acta Sedimentologica Sinica, 2012, 30(3): 547-555.
[7]
胡成飞, 潘存鸿, 吴修广, 等. 1959—2019年杭州湾南岸滩涂演变规律及机制[J]. 水科学进展, 2021, 32(2):230-241.
HU C F, PAN C H, WU X G, et al. Tidal flat evolution law and its mechanism on the south bank of Hangzhou Bay from 1959 to 2019[J]. Advances in Water Science, 2021, 32(2): 230-241.
[8]
赵秧秧, 高抒. 台风风暴潮影响下潮滩沉积动力模拟初探:以江苏如东海岸为例[J]. 沉积学报, 2015, 33(1):79-90.
ZHAO Y Y, GAO S. Simulation of tidal flat sedimentation in response to typhoon-induced storm surges: A case study from Rudong coast, Jiangsu, China[J]. Acta Sedimentologica Sinica, 2015, 33(1): 79-90.
[9]
王爱军, 叶翔, 陈坚. 台风作用下的港湾型潮滩沉积过程:以2008年“凤凰”台风对福建省罗源湾的影响为例[J]. 海洋学报, 2009, 31(6):77-86.
WANG A J, YE X, CHEN J. Effects of typhoon on sedimentary processes of embayment tidal flat:A case study from the “Fenghuang” typhoon in 2008[J]. Acta Oceanologica Sinica, 2009, 31(6): 77-86.
[10]
SLAYMAKER O. The sediment budget as conceptual framework and management tool[C]//The Interactions between Sediments and Water. Dordrecht: Springer, 2003: 71-82.
[11]
刘秀娟, 高抒, 汪亚平. 淤长型潮滩剖面形态演变模拟:以江苏中部海岸为例[J]. 地球科学, 2010, 35(4):542-550.
LIU X J, GAO S, WANG Y P. Modeling the shore-normal profile shape evolution for an accretional tidal flat on the central Jiangsu coast[J]. Earth Science, 2010, 35(4): 542-550.
[12]
AAGAARD T. Sediment transfer from beach to shoreface: The sediment budget of an accreting beach on the Danish North Sea Coast[J]. Geomorphology, 2011, 135(1/2): 143-157.
[13]
SHI B W, WANG Y P, DU X Q, et al. Field and theoretical investigation of sediment mass fluxes on an accretional coastal mudflat[J]. Journal of Hydro-environ-ment Research, 2016, 11: 75-90.
[14]
ZHU S B, GAO S, LI M L, et al. Evolution modeling and protection scheme for tidal flats under natural change and human pressure, central Jiangsu coast[J]. Earth’s Future, 2024, 12(4): e2023EF003913.
[15]
WANG Y P, GAO S, JIA J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China[J]. Marine Geology, 2012, 291-294: 147-161.
[16]
李占海, 高抒, 陈沈良. 江苏大丰潮滩潮流边界层特征研究[J]. 海洋工程, 2007, 25(3):53-60.
LI Z H, GAO S, CHEN S L. Characteristics of tide-induced bottom boundary layers over the Dafeng intertidal flats, Jiangsu Province, China[J]. The Ocean Engineering, 2007, 25(3): 53-60.
[17]
柯贤坤. 潮滩生态特征及开发利用模式:以江苏大丰潮滩研究为例[J]. 自然资源学报, 1993, 8(2):122-131.
KE X K. The ecological system and the exploitation model of tidal flats: A case study of the tidal flats of Dafeng county, Jiangsu Province[J]. Journal of Natural Resources, 1993, 8(2): 122-131.
[18]
ROSATI J D. Concepts in sediment budgets[J]. Journal of Coastal Research, 2005, 212: 307-322.
[19]
高抒, 贾建军, 于谦. 海岸冲淤动态的理论分析:物质收支、剖面形态、岸线进退[J]. 海洋地质与第四纪地质, 2023, 43(2):1-17.
GAO S, JIA J J, YU Q. Theoretical framework for coastal accretion-erosion analysis: Material budgeting, profile morphology, shoreline change[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 1-17.
[20]
GU Y, CHEN J C, CHEN Z Y, et al. Near real-time monitoring of muddy intertidal zones based on spatiotemporal fusion of optical satellites data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 1596-1609.
[21]
ZHUANG L L, ZHAO C Y, ZHENG G H, et al. Synergetic evolution mechanism of coastal resources utilization and coastline change of muddy coast in Jiangsu[J]. Ocean & Coastal Management, 2024, 251: 107089.
[22]
樊一阳, 彭雲, 王韫玮, 等. 2017—2020年江苏中部潮滩地貌的季节和年际演化[J]. 海洋地质与第四纪地质, 2023, 43(6):34-44.
FAN Y Y, PENG Y, WANG Y W, et al. Seasonal and interannual evolution of geomorphology in middle Jiangsu tidal flat from 2017 to 2020[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 34-44.

致谢

在野外观测与数据采集过程中,陈德志、李任之、田静和孙剑雄提供了重要的协助,谨致谢忱。

基金

国家自然科学基金(42306189)
江苏省自然资源发展资金(苏财资环[2024]33号)
江苏省自然资源科技项目(JSZRKJ202422)

PDF(3562 KB)

Accesses

Citation

Detail

段落导航
相关文章

/