在卫星遥感影像识别中,相较于海上单一环境的船舶识别,港口船舶识别由于存在集装箱、码头等大量干扰目标,显得更为困难。采用强度-色度-饱和度(Intensity-Hue-Saturation,IHS)变换、Brovey变换(Brovey Transform,BT)、ESRI全色锐化变换、简单均值变换和施密特正交变换法(Gram-Schmidt,GS)等5种融合算法,进行高分二号卫星全色和多光谱影像的融合试验,通过定性和定量评价选出适用于港口船舶影像的最优方法。结果显示GS融合方法在增加影像空间信息的同时维持了光谱保真性,其均方根误差、峰值信噪比、结构相似性等指标均优于其他4种融合方法,可用于港口船舶识别。
Abstract
In satellite remote sensing image recognition, compared with ship recognition in a single marine environment, port ship recognition is more difficult due to the presence of a large number of interference targets such as containers and docks. In order to improve the recognition ability of GF-2 satellite data on port ships, five fusion algorithms, i.e. Intensity Hue Saturation (IHS) Transform, Brovey Transform(BT), ESRI panchromatic sharpening Transform, simple mean Transform and Gram-Schmidt Transform (GS) were used to perform the fusion experiment of panchromatic and multispectral images, and the optimal method applicable to port ship images is selected through qualitative and quantitative evaluation. The results show that GS Transform can increase spatial information while maintaining spectral fidelity, and its mean value, root mean square error, peak signal to noise ratio, and structural similarity are superior to the other four fusion algorithms, with high recognition accuracy for port ships.
关键词
遥感 /
影像融合 /
港口船舶 /
高分二号卫星影像
Key words
remote sensing /
image fusion /
port ship /
GF-2 satellite data
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GOSHTASBY A A, NIKOLOV S. Image fusion: Advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114-118.
[2] 李俊杰,何隆华,戴锦芳,等.遥感影像像元级融合方法与试验评价分析[J].地球信息科学,2008,10(1):128-134.
LI Junjie, HE Longhua, DAI Jinfang, et al. Analysis of pixel-level remote sensing image fusion methods[J]. Geo-Information Science, 2008, 10(1): 128-134.
[3] 张一平,孟伟灿,田卫亮,等.基于色彩变换的遥感影像融合研究[J].测绘与空间地理信息,2019,42(11):145-149,153.
ZHANG Yiping, MENG Weican, TIAN Weiliang, et al. Research on fusion of remote sensing image based on color transformation[J]. Geomatics & Spatial Information Technology, 2019, 42(11): 145-149, 153.
[4] 贾永红,李德仁,孙家柄.多源遥感影像数据融合[J].遥感技术与应用,2000,15(1):41-44.
JIA Yonghong, LI Deren, SUN Jiabing. Data fusion techniques for multisources remotely sensed imagery[J]. Remote Sensing Technology and Application, 2000, 15(1): 41-44.
[5] 赵文驰,宋伟东,陈敏.国产高分辨率遥感卫星融合方法比较[J].测绘与空间地理信息,2019,42(11):154-158,163.
ZHAO Wenchi, SONG Weidong, CHEN Min. Comparison of fusion methods in domestic high resolution remote sensing[J]. Geomatics & Spatial Information Technology, 2019, 42(11): 154-158, 163.
[6] 董倩,岳彩荣.高分一号卫星影像融合方法及质量评价[J].林业调查规划,2016,41(5):1-5,10.
DONG Qian, YUE Cairong. Image fusion and quality assessment of GF-1[J]. Forest Inventory and Planning, 2016, 41(5): 1-5, 10.
[7] ESRI. Fundamentals of panchromatic sharpening[EB/OL]. [2002-04-15].https://desktop.arcgis.com/zh-cn/arcmap/latest/manage-data/raster-and-images/fundamentals-of-panchromatic-sharpening.htm.
[8] 刘川,齐修东,臧文乾,等.基于IHS变换的Gram-Schmidt改进融合算法研究[J].测绘工程,2018,27(11):9-14.
LIU Chuan, QI Xiudong, ZANG Wenqian, et al. Research of improved Gram-Schmidt image fusion algorithm based on IHS transform[J]. Engineering of Surveying and Mapping, 2018, 27(11): 9-14.
[9] 陈昱文,熊建林,刘斌,等.光学遥感图像船只目标检测识别技术[J].遥测遥控,2021,42(3):64-73.
CHEN Yuwen, XIONG Jianlin, LIU Bin, et al. Survey of ship detection and recognition technology in optical remote sensing images[J]. Journal of Telemetry, Tracking and Command, 2021, 42(3): 64-73.
[10] 肖昶,余晓敏,韩逸飞.高分二号卫星影像融合技术研究[J].地理空间信息,2018,16(6):13-16,7.
XIAO Chang, YU Xiaomin, HAN Yifei. Research on image fusion technology of GF-2 satellite[J]. Geospatial Information, 2018, 16(6): 13-16, 7.
[11] 黄晓青,余月华.基于IHS变换的彩色图像融合方法[J].现代计算机:专业版,2015(32):57-60.
HUANG Xiaoqing, YU Yuehua. The algorithm of color image fusion based on IHS transform[J]. Modern Computer, 2015(32): 57-60.
[12] 周会珍,吴双,毛德发,等.多卫星传感器数据的Brovey融合改进方法[J].遥感学报,2012,16(2):343-360.
ZHOU Huizhen, WU Shuang, MAO Defa, et al. Improved Brovey method for multi-sensor image fusion[J]. Journal of Remote Sensing, 2012, 16(2): 343-360.
[13] JAGALINGAM P, HEGDE A V. A review of quality metrics for fused image[J]. Aquatic Procedia, 2015, 4: 133-142.
[14] JIN Xin, NIE Rencan, ZHOU Dongming, et al. Multifocus color image fusion based on NSST and PCNN[J]. Journal of Sensors, 2016: 8359602.
[15] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
ZHAO Yingshi. Principle and method of remote sensing analysis[M]. Beijing: Science Press, 2003.
[16] 刘祥平,张贞,冯莉莉,等.山区盆地高分一号遥感数据融合方法比较研究[J].天津城建大学学报,2021,27(2):137-142.
LIU Xiangping, ZHANG Zhen, FENG Lili, et al. Compa-rative research on fusion methods of remote sensing data of GF-1 in mountain basin[J]. Journal of Tianjin Chengjian University, 2021, 27(2): 137-142.
[17] IVKOVIC G, SANKAR R. An algorithm for image quality assessment[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal, QC, Canada. IEEE, 2004: 713-716.
[18] SHEIKH H R, SABIR M F, BOVIK A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451.
[19] 田青林,余长发,潘蔚,等.面向地质应用的高分二号卫星影像融合方法评价[J].科学技术与工程,2019,19(29):207-212.
TIAN Qinglin, YU Changfa, PAN Wei, et al. Evaluation on fusion method for GF-2 satellite images in geological application[J]. Science Technology and Engineering, 2019, 19(29): 207-212.
[20] 徐鹏,胡吉平,谭衢霖,等.基于GDAL库实现高分二号遥感影像融合质量评价[J].测绘与空间地理信息,2017,40(7):30-33.
XU Peng, HU Jiping, TAN Qulin, et al. Quality assessment of GF-2 remote sensing image fusion based on GDAL library[J]. Geomatics & Spatial Information Technology, 2017, 40(7): 30-33.
基金
高分海洋资源环境遥感信息处理与业务应用示范系统(二期)(41-Y30F07-9001-20/22);海洋领域融合应用示范项目