西南印度洋脊49.6°E热液区热液产物和玄武岩地球化学特征

王振波, 武光海, 韩沉花

海洋学研究 ›› 2014, Vol. 32 ›› Issue (1) : 64-73.

PDF(2563 KB)
PDF(2563 KB)
海洋学研究 ›› 2014, Vol. 32 ›› Issue (1) : 64-73. DOI: 10.3969/j.issn.1001-909X.2014.01.008
研究论文

西南印度洋脊49.6°E热液区热液产物和玄武岩地球化学特征

  • 王振波1,2, 武光海1,2, 韩沉花*1,2
作者信息 +

Geochemical characteristics of hydrothermal deposits and basalts at 49.6°E on the Southwest Indian Ridge

  • WANG Zhen-bo1,2, WU Guang-hai 1,2, HAN Chen-hua*1,2
Author information +
文章历史 +

摘要

利用X射线荧光法和ICP-MS等方法对取自超慢速扩张的西南印度洋脊(SWIR) 49.6°E热液区的热液产物和玄武岩样品进行元素地球化学特征分析研究,结果表明:(1)与亏损型洋中脊玄武岩(N-MORB)相比,研究区玄武岩样品的主量元素组成显示其偏碱性,而微量元素对比表明该区玄武岩明显富集Pb元素;(2)对热液产物的综合分析表明这些样品多为Fe-Si-Mn氧羟化物且都为热液来源;(3)热液产物的∑REE含量介于玄武岩和海水之间,经球粒陨石标准化的稀土元素(REE)分布模式均表现出Eu正异常和轻稀土(LREE)富集的特征。另外,本研究还表明,利用玄武岩和热液产物地球化学指标不仅能够模拟出以热液喷口为中心的元素地球化学晕,而且能反映出热液活动的影响范围。

Abstract

The geochemical characteristics of hydrothermal deposits and basalt samples taken from the ultraslow-spreading Southwest Indian Ridge at 49.6°E were analyzed by using XRF and ICP-MS. The results indicate: (1) the basalt samples in this area tend to be more alkaline comparing with the contents of the major elements of the N-type mid-ocean ridge basalts (N-MORB), and they are richer in Pb element than the N-MORB comparing with the contents of the trace element; (2) the analysis of major elements and trace elements of hydrothermal deposits indicates that the chosen samples are mostly Fe, Si, Mn-rich oxyhydroxide, and both of them are the hydrothermal origin; and (3) the contents of REE in the hydrothermal deposits are between those in basalt and seawater, the chondrite-normalized REE patterns of the hydrothermal deposits are characterized by positive Eu anomalies and LREE enrichments, and the geochemical indicators can not only simulate the distribution of element halos center on the hydrothermal vent on a small scale, but also reflect the influence area of the nearest hydrothermal activity.

关键词

西南印度洋脊 / 玄武岩 / 热液产物 / 地球化学晕

Key words

Southwest Indian Ridge / basalt / hydrothermal deposits / geochemical halos

引用本文

导出引用
王振波, 武光海, 韩沉花. 西南印度洋脊49.6°E热液区热液产物和玄武岩地球化学特征[J]. 海洋学研究. 2014, 32(1): 64-73 https://doi.org/10.3969/j.issn.1001-909X.2014.01.008
WANG Zhen-bo, WU Guang-hai , HAN Chen-hua. Geochemical characteristics of hydrothermal deposits and basalts at 49.6°E on the Southwest Indian Ridge[J]. Journal of Marine Sciences. 2014, 32(1): 64-73 https://doi.org/10.3969/j.issn.1001-909X.2014.01.008
中图分类号: P736.3   

参考文献

[1] CORLISS J B, DYMOND J, GORDON L I, et al. Submarine thermal springs on the Galapagos Rift[J]. Science, 1979, 203(4 385): 1 073-1 083.
[2] BAKER E T, GERMAN C R. On the global distribution of hydrothermal vent fields[M]// GERMAN C R, LIN J, PARSON L M. Mid-ocean ridge: Hydrothermal interactions between the lithosphere and oceans: Geophysical monography series 148. Washington DC: AGU,2004:245-266.
[3] BANERJEE R, RAY D. Metallogenesis along the Indian Ocean Ridge system[J]. Current Science, 2003,85(3):321-327.
[4] GERMAN C R, BAKER E T, MEVEL C, et al. Hydrothermal activity along the southwest Indian ridge[J]. Nature, 1998,395(6 701):490-493.
[5] MÜNCH U, LALOU C, HALBACH P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E—mineralogy, chemistry and chronology of sulfide samples[J]. Chemical Geology, 2001,177(3-4):341-349.
[6] LIN Jian. The first collaborative China-international cruises to investigate mid-ocean ridge hydrothermal vents[J]. InterRidge News, 2006,15:1-3.
[7] TAO Chun-hui, LIN Jian, GUO Shi-qin, et al. Discovery of the first active hydrothermal vent field at the ulteraslow spreading Southwest Indian Ridge: The Chinese DYI 15-19 Cruise[J]. Ridge Crest Ridge, 2007,16:25-26.
[8] SONG Xue-chun. Which lasted 300 days, accumulated more than 46,000 sea miles sailing—“Da Yang Yi Hao”full return[N]. People′s Daily, 2009-03-18(5).
宋学春.历时300多天,累计航行4.6万多海里——“大洋一号”满载归来[N].人民日报,2009-03-18(5).
[9] YU Miao, SU Xin, TAO Chun-hui, et al. Petrological and geochemical features of basalts at 49.6°E and 50.5°E hydrothermal fields along the Southwest Indian Ridge[J]. Geoscience, 2013,27(3):497-508.
于淼,苏新,陶春辉,等.西南印度洋中脊49.6°E和50.5°E区玄武岩岩石学及元素地球化学特征[J].现代地质,2013,27(3):497-508.
[10] YE Jun, SHI Xue-fa, YANG Yao-min. Hydrothermal sulfide mineralization from ultraslow-spreading Southwest Indian Ridge near 49.5°E[J]. Acta Mineralogica Sinica, 2009,29(1):382-383.
叶俊,石学法,杨耀民.西南印度洋超慢速扩张脊49.5°E热液区热液硫化物成矿作用研究[J].矿物学报,2009,29(1):382-383.
[11] TAO Chun-hui, LI Huai-ming, HUANG Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011,56(26):2 828-2 838.
陶春辉,李怀明,黄威,等.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J].科学通报,2011,56(28-29):2 413-2 423.
[12] GEORGEN J E, KURZ M D, DICK H J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge(10-24°E)[J]. Earth and Planetary Science Letters, 2003,206(3-4):509-528.
[13] YE Jun, SHI Xue-fa, YANG Yao-min, et al. Geological characteristics and mineralization of polymetallic sulfide in ultraslow-spreading ridges: Example as Southwest Indian Ridge[J]. Journal of Central South University: Science and Teachnology, 2011,42(2):34-38.
叶俊,石学法,杨耀民,等.超慢速扩张脊地质特征与多金属硫化物成矿探讨——以西南印度洋脊研究为例[J].中南大学学报:自然科学版,2011,42(2):34-38.
[14] SAUTER D, CANNAT M, MEYZEN C, et al. Propagation of a melting anomaly along the ultra-slow Southwest Indian Ridge between 46°E and 52°20′E: Interaction with the Crozet hot-spot[J]? Geophysical Journal International, 2009,179(2):687-699.
[15] TAO Chun-hui, LIN Jian, GUO Shi-qin, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2011,12(20):47-50.
[16] GILL R. Igneous rocks and processes: A practical guide[M]. Oxford: Wiley-Blackwell, 2011:26-28.
[17] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989,42(1):313-345.
[18] CAO Hong. Hydrothermal mineralization and geological and geochemical characteristics of SWIR[D]. Qingdao: Ocean University of China, 2010.
曹红.西南印度洋中脊热液成矿作用及其地质地球化学研究[D].青岛:中国海洋大学,2010.
[19] NOLL P D, NEWSOM H E, LEEMAN W P, et al. The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron[J]. Geochimica et Cosmochimica Acta,1996,60(4):587-611.
[20] NAKAMURA Kentaro, KATO Yasuhiro, TAMAKI Kensaku, et al. Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian ridge near the Rodriguez triple junction[J]. Marine Geology, 2007,239(3-4):125-141.
[21] ZENG Zhi-gang, WANG Xiao-yuan, ZHANG Guo-liang, et al. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data[J]. Science in China, 2007,37(10):1 349-1 357.
曾志刚,王晓媛,张国良,等.东太平洋海隆13°N附近Fe-氧羟化物的形成:矿物和地球化学证据[J].中国科学,2007,37(10):1 349-1 357.
[22] BOSTRÖM K. The origin and fate of ferromanganese active ridge sediments[J]. Stockholm Contributions in Geology, 1973,27(2):148-243.
[23] HEKINIAN R, HOFFERT M, LARQUE P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions[J]. Economic Geology, 1993,88(8):2 099-2 121.
[24] LIU Yi, PENG Zi-cheng, WEI Gang-jian, et al. Geochemistry of REE in a Porites coral from Sai Kung, Hong Kong and its relationship with sea level rise[J]. Geochimica, 2006,35(5):531-539.
刘弈,彭子成,韦刚健,等.香港西贡滨珊瑚REE的地球化学特征及其与海平面变化的关系[J].地球化学,2006,35(5):531-539.
[25] WHEAT C G, MOTTL M J, RUDNICKI M. Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring[J]. Geochimica et Cosmochimica Acta, 2002,66(21):3 693-3 705.
[26] BOYNTON W V. Cosmochemistry of the rare earth elements: Meteorite studies[C]//HENDERSON P. Rare earth element geochemistry. Amsterdam: Elsevier, 1984:63-114.
[27] LIU Ji-hua. The geochemistry of REEs and Nd isotope in Deep-sea sediments from the Eastern Pacific[D]. QingDao: The Institute of Oceanology, Chinese Academy of Sciences, 2004.
刘季花.东太平洋沉积物稀土元素和Nd同位素地球化学特征及其环境指示意义[D].青岛:中国科学院海洋研究所,2004.
[28] DING Zhen-ju, LIU Cong-qiang, YAO Shu-zhen, et al. The rare earth elements compositions of seafloor hydrothermal sediments and its significance[J]. Geological Science and Technology Information, 2000,19(1):27-35.
丁振举,刘丛强,姚书振,等.海底热液沉积物稀土元素组成及其意义[J].地质科技情报,2000,19(1):27-35.
[29] BAO Shen-xu, ZHOU Huai-yang, PENG Xiao-tong, et al. Rare earth element geochemistry of hydrothermal sulfide from Endeavour segment, Juan de Fuca Ridge[J]. Geochimica, 2007,36(3):303-310.
包申旭,周怀阳,彭晓彤,等.Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征[J].地球化学,2007,36(3):303-310.
[30] CHEN Hong, ZHU Ben-duo, CUI Zhao-guo. A study on geological and geochemical characteristics of seafloor hydrothermal polymetallicdeposits[J]. Journal of Tropical Oceanography,2006,25(2):79-84.
陈弘,朱本铎,崔兆国.海底热液矿床地质和地球化学特点研究[J].热带海洋学报,2006,25(2):79-84.
[31] LUPTON J E, PYLE D G, JENKINS W J, et al. Evidence for an extensive hydrothermal plume in the Tonga-Fiji region of the South Pacific[J]. Geochemisty Geophyiscs Geosystems, 2004,5(1):1-18.
[32] YANG Yao-min, YE Jun, SHI Xue-fa, et al. Mineralogy and geochemistry of submarine metalliferous sediments and significances for hydrothermal activity[J]. Jouranl of Central South University: Science and Technology, 2011,42(2):65-74.
杨耀民,叶俊,石学法,等.海底含金属沉积物矿物学和地球化学及其对热液活动的指示[J].中南大学学报:自然科学版,2011,42(2):65-74.
[33] BOSTRÖM K, PETERSON M N A. The origin of aluminum poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969,7(5):427-447.

基金

中国大洋“十二五”重大项目资助(DY125-11-R-04);国家重点基础研究发展计划项目资助(2012CB417305);国家海洋局第二海洋研究所基本科研业务费项目资助(JG1216)

PDF(2563 KB)

Accesses

Citation

Detail

段落导航
相关文章

/