海洋学研究 ›› 2014, Vol. 32 ›› Issue (3): 36-41.DOI: 10.3969/j.issn.1001-909X.2014.03.005

• 研究论文 • 上一篇    下一篇

黄河口湿地典型地物类型高光谱分类方法

王建步, 张杰, 马毅, 任广波   

  1. 国家海洋局 第一海洋研究所,山东 青岛 266061
  • 收稿日期:2013-10-28 修回日期:2014-02-17 出版日期:2014-09-15 发布日期:2022-11-25
  • 作者简介:王建步(1981-),男,山东滨州市人,研究实习员,主要从事海岛海岸带遥感与应用研究。E-mail:wangjianbu@fio.org.cn
  • 基金资助:
    国家自然科学基金项目资助(41206172);国家海洋局第一海洋研究所基本科研业务费专项项目资助(2013G08)

Classification method of hyperspectral image in typical surface feature of Huanghe River estuary wetland

WANG Jian-bu, ZHANG Jie, MA Yi, REN Guang-bo   

  1. The First Institute of Oceanography, SOA, Qingdao 266061, China
  • Received:2013-10-28 Revised:2014-02-17 Online:2014-09-15 Published:2022-11-25

摘要: 黄河口湿地地物类型具有复杂多样的特点,本文将线性光谱混合分析模型与归一化植被指数(NDVI)和归一化水体指数(NDWI)相结合,建立了一种新的滨海湿地遥感影像分类方法;开展了基于CHRIS高光谱影像的黄河口湿地芦苇、柽柳、碱蓬、大米草、潮滩和水体6种典型地物分类实验,整体分类精度为77.33%,Kappa 系数为 0.71,与经典的最大似然分类(MLC)方法相比较,整体分类精度提高1.6%,Kappa 系数提高0.02,尤其是芦苇、碱蓬、大米草和潮滩的分类精度明显提高。

关键词: 黄河口湿地, 高光谱遥感影像, 线性光谱混合分析, 地物分类, NDVI, NDWI

Abstract: The typical surface feature of Huanghe River estuary wetland is complex and diverse. In this study, a new classification model for coast wetland remote image was constructed using the linear spectral mixture analysis model, combined with normalized difference vegetation index(NDVI) and normalized difference water index(NDWI). Based on CHRIS hyperspectral image, a classification test of Huanghe River estuary wetland was carried, which consisted of 6 kinds of typical objects: phragmites, tamarix chinesis, suaeda, spartina, tidal flat and water, The results show that the overall accuracy of the combined model is 77.33%, and Kappa coefficient is 0.71, increasing 1.6% and 0.02 respectively compared with that from the classical MLC method, and especially, a better classification accuracy is obtained obviously for phragmites, suaeda, spartina and tidal flat.

Key words: Huanghe River estuary wetland, hyperspectral remote image, linear spectral mixture analysis, classification of typical surface feature, NDVI, NDWI

中图分类号: