[1] State Oceanic Administration. National marine affairs development plan[EB/OL]. http://www.soa.gov.cn/zwgk/fwjgwywj/gwyfgwj/201211/t20121105_5261.html. 国家海洋局.国家海洋事业发展规划[EB/OL].http://www.soa.gov.cn/zwgk/fwjgwywj/gwyfgwj/201211/t20121105_5261.html. [2] XIAO Kang, XU Hui-ping, YE Na. Preliminary research on the reclamation at the Fujian coast based on the remote sensing imagery[J]. Marine Science Bulletin,2013,32(6):685-694. 肖康,许惠平,叶娜.基于遥感影像的福建围填海初步研究[J].海洋通报,2013,32(6):685-694. [3] LIU Rong-jie, ZHANG Jie, MA Yi, et al. Monitoring and analysis of sea reclamations in Sanshawan Bay based remote sensing in the past 30 years[J]. Ocean Development and Management, 2014(9): 17-21. 刘荣杰,张杰,马毅,等.三沙湾30余年来围填海遥感监测与分析[J].海洋开发与管理,2014(9):17-21. [4] LIU Qin-qin. Survey and analysis of sea reclamations in Guangdong Province based on 3S[D]. Qingdao: Shandong University of Science and Technology, 2010. 刘琴琴.基于3S技术的广东省围填海调查与分析[D].青岛:山东科技大学,2010. [5] WU Zheng-peng, XI Ge,WANG Jian-Jie. Reclamation monitoring based on the multi-source remote sensing image——As an example of Tianjin Nangang Industrial Zone[J]. Urban Geotechnical Investigation & Surveying,2012(6):77-80. 吴正鹏,奚歌,王健洁.基于多源遥感影像的围填海监测——以天津南港工业区为例[J].城市勘测,2012(6):77-80. [6] JU Ming-ming, WANG Min, ZHANG Dong, et al. Study on the remote-sensing-based monitoring of reclamation project area by using the object-oriented image analysis technique[J]. Marine Science Bulletin,2013,32(6):678-684. 鞠明明,汪闽,张东,等.基于面向对象图像分析技术的围填海用海工程遥感监测[J].海洋通报,2013,32(6):678-684. [7] ZHU Li-li, SHAO Feng-jing, WANG Chang-ying, et al. The Sea-filling land detect method research using remote sensing images based on data mining[J]. Journal of Qingdao University:Natural Science Edition,2012,25(2):53-57,66. 朱丽丽,邵峰晶,王常颖,等.基于数据挖掘的遥感影像围填海智能检测方法研究[J].青岛大学学报:自然科学版,2012,25(2):53-57,66. [8] WANG Chang-ying. Coastal land covers classification of remote sensing images based on data mining technology[D]. Qingdao: Ocean University of China,2009. 王常颖.基于数据挖掘的遥感影像海岸带地物分类方法研究[D].青岛:中国海洋大学,2009. [9] DEMPSTER A. Upper and lower probabilities induced by multivalued mapping[J]. Annals of Mathematical Statistics,1967,38(2):325-339. [10] ZHU-GE Jian-wei, WANG Da-wei, CHEN Yi, et al. A network anomaly detector based on the D-S evidence theory[J]. Journal of Software,2006,17(3):463-471. 诸葛建伟,王大为,陈昱,等.基于D-S证据理论的网络异常检查方法[J].软件学报,2006,17(3):463-471. [11] WANG Yong-qing. Principle and method of artificial intelligence[M]. Xi'an:Xi'an Jiaotong University Press,1998:185-190. 王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998:185-190. [12] WANG Chang-ying, ZHANG Jie, MA Yi. Coastal land covers classification of high-resolution images based on dempster-shafer evidence theory [C]//2008 International Conference on Computer Science and Software Engineering,2008:1 061-1 064. [13] SHOYAIB M M, WADUD A A, CHAE O. A skin detection approach based on the Dempster-Shafer theory of evidence[J]. International Journal of Approximate Reasoning,2012,53(4):636-659. [14] ZHANG Da-qiang, GUO Min-yi, ZHOU Jing-yu, et al. Context reasoning using extended evidence theory in pervasive computing environments[J].Future Generation Computer Systems,2010,26(2):207-216. [15] JIROUŠEK R, VEJNAROVÁ J. Compositional models and conditional independence in evidence theory[J]. International Journal of Approximate Reasoning,2011,52(3):316-334. [16] LIN T C. Decision-based fuzzy image restoration for noise reduction based on evidence theory[J]. Expert Systems with Applications,2011,38(7):8 303-8 310. [17] COHEN Y, SHOSHANY M. Analysis of convergent evidence in an evidential reasoning knowledge-based classification[J]. Remote Sensing of Environment,2005,96(3-4):518-528. [18] MAHDI T, REZA G, REZA E. Knitted fabric defect classification for uncertain labels based on Dempster-Shafer theory of evidence[J]. Expert Systems with Applications,2011,38(5):5 259-5 267. |