中太平洋CA海山玄武岩中斜长石化学成分特征及地质意义

何欣, 孙国胜, 初凤友, 王春光, 晋瑞香, 李洋, 战乃臣, 刘世伟, 孙九达

海洋学研究 ›› 2017, Vol. 35 ›› Issue (2) : 23-32.

PDF(2054 KB)
PDF(2054 KB)
海洋学研究 ›› 2017, Vol. 35 ›› Issue (2) : 23-32. DOI: 10.3969/j.issn.1001-909X.2017.02.003
研究论文

中太平洋CA海山玄武岩中斜长石化学成分特征及地质意义

  • 何欣1, 孙国胜1, 初凤友2, 王春光3, 晋瑞香1, 李洋1, 战乃臣1, 刘世伟1, 孙九达1
作者信息 +

Chemical characteristics and geological implication of plagioclase in CA Seamount basalts from the Middle Pacific

  • HE Xin1, SUN Guo-sheng1, CHU Feng-you2, WANG Chun-guang3, JIN Rui-xiang1, LI Yang1, ZHAN Nai-chen1, LIU Shi-wei1, SUN Jiu-da1
Author information +
文章历史 +

摘要

在对CA海山玄武岩CAD21样品岩相学研究基础上,运用电子探针和X-荧光光谱法(XRF)对中太平洋CA海山斜长石斑晶中的环带、斜长石微晶和玄武岩中的硅酸盐进行了化学成分研究。CA海山玄武岩为地幔柱成因的板内玄武岩;斜长石斑晶具有环带结构,环带核部与边部为不连续消光,是不连续环带;环带核部为培长石,边部为拉长石,是岩浆演化过程中形成的正环带,其成因受岩浆演化过程中熔体组分及温、压条件的共同制约。斜长石斑晶核部、边部及斜长石微晶估算温度平均值分别为1 281,1 198和1 071 ℃,分别代表了岩浆源区、岩浆房及岩浆喷发温度,三者温度差值较小,这和洋岛玄武质岩浆的形成及喷发特点相吻合。

Abstract

Chemical composition of plagioclase phenocryst zone, plagioclase crystallite and silicate of basalts in CA Seamount (sample CAD21), was examined using EPMA method and X-Ray fluorescence spectrometry (XRF) on basis of petrography. The basalts of CA Seamount are intraplate basalts formed by the activity of mantle plume. The core and the edge of zones of plagioclase phenocrysts show nonsequence optical extinction phenomenon, indicating a discontinuous zoning structure. The sequence of zones is labradorite to bytownite from edge to core, showing a normal zoning in the process of magmatic evolution. Such a phenomenon is constrained by melt composition and temperature-pressure condition. Average temperatures of plagioclase phenocrysts are 1 281 ℃(temperature of magmatic source),1 198℃(temperature of magmatic chamber) and 1 071 ℃(temperature of magmatic exhalation) respectively. The small temperature difference indicates a rapidly eruption process, in accord with the formation and eruption characteristics of oceanic island basalt magma.

关键词

CA海山 / 玄武岩 / 斜长石 / 环带 / 结晶温度

Key words

CA Seamount / basalt / plagioclase / zoning / crystallization temperature

引用本文

导出引用
何欣, 孙国胜, 初凤友, 王春光, 晋瑞香, 李洋, 战乃臣, 刘世伟, 孙九达. 中太平洋CA海山玄武岩中斜长石化学成分特征及地质意义[J]. 海洋学研究. 2017, 35(2): 23-32 https://doi.org/10.3969/j.issn.1001-909X.2017.02.003
HE Xin, SUN Guo-sheng, CHU Feng-you, WANG Chun-guang, JIN Rui-xiang, LI Yang, ZHAN Nai-chen, LIU Shi-wei, SUN Jiu-da. Chemical characteristics and geological implication of plagioclase in CA Seamount basalts from the Middle Pacific[J]. Journal of Marine Sciences. 2017, 35(2): 23-32 https://doi.org/10.3969/j.issn.1001-909X.2017.02.003
中图分类号: P588.14+5   

参考文献

[1] MEI fang. Mineralogical characteristics of plagioclase in mid-acidic magmatite in Ningzhen area[J].Science & Technology Information,2012(17):15-25.
梅芳.宁镇地区中酸性岩浆岩中斜长石的矿物学特征[J].科技信息,2012(17):15-25.
[2] LOFGREN G E. An experimental study of plagioclase crystal morphology; isothermal crystallization[J]. American Journal of Science,1974, 274(3):243-273.
[3] LOFGREN G. Experimental studies on the dynamic crystallization of silicate melts[C]//Physics of Magmatic Processes,1980:487-565.
[4] SMITH R K, LOFGREN G E. An analytical and experimental study of zoning in plagioclase[J]. Lithos,1983,16(2):153-168.
[5] ANDERSON A T. Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala[J]. American Mineralogist,1984,69(7):660-676.
[6] TSUCHIYAMA A. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites[J]. Contributions to Mineralogy and Petrology,1985,89(1):1-16.
[7] NAKAMURA M, SHIMAKITA S. Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase[J]. Earth & Planetary Science Letters,1998,161(s1-4):119-133.
[8] HAMMER J E, RUTHERFORD M J. An experimental study of the kinetics of decompression induced crystallization in silicic melt[J]. Journal of Geophysical Research Atmospheres,2002,107(B1):780-786.
[9] CHEN Xiao-ming, TAN Qing-quan, ZHAO Guang-tao. Plagioclases from the basalt of Okinawa Trough and its petrogenesis significance[J]. Acta Petrologica Sinica,2002,18(4):482-488.
陈小明,谭清泉,赵广涛.海底玄武岩中斜长石研究及其岩石学意义[J].岩石学报,2002,18(4):482-488.
[10] ZENG Zhi-gang, ZHANG Song-mei, CHANG Li-hua. Mineralogical and chemical characteristics of basalts from the northern margin of the continental shelf in the East China Sea[J]. Marine Geology & Quaternary Geology,2002,22(3):47-52.
曾志刚,张松梅,常丽华.东海陆架边缘北部玄武岩的矿物及化学特征[J].海洋地质与第四纪地质,2002,22(3):47-52.
[11] YAN Quan-shu, SHI Xue-fa, LIU Ji-hua, et al. Chemical composition of plagioclase in Cenozoic alkali basalt from the South China Sea[J]. Acta Mineralgica Sinica,2008,28(2):135-142.
鄢全树,石学法,刘季花等.南海新生代碱性玄武岩中斜长石矿物的化学成分及意义[J].矿物学报,2008,28(2):135-142.
[12] ZHAO Li-hong, GAO Jin-yao, JIN Xiang-long. Research on drifting history and tectonic origin of the mid-pacific mountains[J]. Marine Geology & Quateranary Geology,2005,25(3):35-42.
赵俐红,高金耀,金翔龙.中太平洋海山群漂移史及其来源[J].海洋地质与第四纪地质,2005,25(3):35-42.
[13] TARDNO J A, GEE J. Large-scale motion between Pacific and Atlantic hotspots[J].Nature,1995,378(6556):477-480.
[14] SUTTON G H,MANGHNANI M H,MOBERLY R,et al. The geophysics of the Pacific Ocean Basin and its margin[J]. Geophysical Monograph Series,1976,19:269-278.
[15] HART S R. A large-scale isotope anomaly in the southern hemisphere mantle[J]. Nature,1984,309(5971):753-757.
[16] SCOTT R W.Global environmental controls on Cretaceous reefal ecosystems[J].Palaeogeography Palaeoclimatology,Palaeoecology,1995,119(1-2):187-199.
[17] ERICKSON J. Marine geoology[M].New York: Facts on File,1996:1-317.
[18] ZHANG Hong-Fei, GAO-Shan. Geochemistry[M]. Beijing: Geological Publishing House,2012:60.
张宏飞,高山.地球化学[M]北京:地质出版社,2012:60.
[19] CHU Feng-you, CHEN Jian-lin, MA Wei-lin. Petrologic characteristics and ages of basalt in middle pacific mountains[J]. Marine Geology & Quaternary Geology,2005,25(4):55-59.
初凤友,陈建林,马维林.中太平洋海山玄武岩的岩石学特征与年代[J].海洋地质与第四纪地质,2005,25(4):55-59.
[20] LI Chao. Geochemical characteristics of basalt and research on co-rich crust formation in the Mid-Pacific CH Seamount[D].Changchun:Jilin University,2013.
李超.中太平洋CH海山玄武岩地球化学特征及富钴结壳成因[D].长春:吉林大学,2013.
[21] LI Yin-ting. The Hypothesis of mantle plumes and its development[J]. Advances in Earth Science,1997,12(5):484-487.
李荫亭.地幔柱假说及其发展[J].地球科学进展,1997,12(5):484-487.
[22] BONATTI E. Mantle under the ocean[J]. Science: Chinese Edition,1994(7):15-22.
BONATTI E.大洋之下的地幔[J].科学:中文版,1994(7):15-22.
[23] NIU Yao-ling. Some basic concepts and problems on the petrogenesis of intro-plate ocean island basalt[J]. Chinese Sci Bull,2010,55(2):103-114.
牛耀龄.板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题[J].科学通报,2010,55(2):103-114.
[24] MAITRE R W L. A Classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Oxford: Blackwell,1989.
[25] MULLEN E D. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth & Planetary Science Letters,1983,62(1):53-62.
[26] PEARCE J A. Trace element characteristics of lavas from destructive plate boundaries[M]//THORPE R S. Andesites. Chichester,UK,1983:525-548.
[27] WU Ping-xiao, WU Jin-ping. Genetic mechanism of plagioclase zoning[J]. Geology Geochemistry,1997,25(4):40-49.
吴平霄.吴金平.斜长石环带的成因机制[J].地质地球化学,1997,25(4):40-49.
[28] DEER W A, HOWIE R A, ZUSSMAN J. An introduction to the rock forming minerals[M]//An introduction to the rock-forming minerals. Longman Scientific & Technical,1992:509-517.
[29] BENDER J F, HODGES F N, BENCE A E. Petrogenesis of basalts from the project FAMOUS area: Experimental study from 0 to 15 kbars[J]. Earth & Planetary Science Letters,1978,41(3):277-302.
[30] NIU Yao-ling, GILMORE T, MACKIE S, et al. Mineral chemistry, whole-rock compositions, and petrogenesis of leg 176 gabbros: Data and discussion[C]. Proceedings of the Ocean Drilling Program, Scientific Results,2002,176:1-60.
[31] WALKER D, SHIBATA T, DELONG S E. Abyssal tholeiites from the Oceanographer Fracture Zone[J]. Contributions to Mineralogy and Petrology,1979,70(1):111-125.
[32] LANGMUIR C H, HANSON G N. Calculating mineral—Melt equilibria with stoichiometry, mass balance, and single-component distribution coefficients[M]//Thermodynamics of minerals and melts. New York: Springer,1981:247-271.
[33] NIELSEN R L, DUNGAN M A. Low pressure mineral-melt equilibria in natural anhydrous mafic systems[J]. Contributions to Mineralogy and Petrology,1983,84(4):310-326.
[34] WEAVER J S, LANGMUIR C H. Calculation of phase equilibrium in mineral-melt systems[J]. Computers & Geosciences,1990,16(1):1-19.
[35] GROVE T L, KINZLER R J, BRYAN W B. Fractionation of Mid-Ocean Ridge Basalt (MORB)[M]// Mantle flow and melt generation at Mid-Ocean Ridges. American Geophysical Union,1992:281-310.
[36] ZHANG Ru-yuan, CONG Bo-lin. Mineralogical thermometer and mineralogical barometer[M]. Beijing: Geological Publishing House,1983:142-144.
张儒瑗,从柏林.矿物温度计和矿物压力计[M].北京:地质出版社,1983:142-144.
[37] DEFFEYES K S. Plume convection with an upper-mantle temperature inversion[J]. Nature,1972,240(5383):539-544.
[38] MORGAN W J. Plate motions and deep mantle convection[J]. Nature,1972,132(11):7-22.
[39] YUEN D A, PELTIER W R. Mantle plumes and the thermal stability of the D″ layer[J]. Geophysical Research Letters,1980,7(9):625-628.

基金

国家自然科学基金面上项目资助(41176045)

PDF(2054 KB)

Accesses

Citation

Detail

段落导航
相关文章

/