卡尔斯伯格脊 60°~61°E洋脊段多波束后向散射特征及其对构造与岩浆作用强度的指示

杨驰, 韩喜球, 王叶剑, 李洪林, 邱中炎, 吴招才

海洋学研究 ›› 2018, Vol. 36 ›› Issue (3) : 37-49.

PDF(5912 KB)
PDF(5912 KB)
海洋学研究 ›› 2018, Vol. 36 ›› Issue (3) : 37-49. DOI: 10.3969/j.issn.1001-909X.2018.03.004
研究论文

卡尔斯伯格脊 60°~61°E洋脊段多波束后向散射特征及其对构造与岩浆作用强度的指示

  • 杨驰1,2, 韩喜球1,2, 王叶剑1,2, 李洪林1,2, 邱中炎1,2, 吴招才1,2
作者信息 +

Characteristics of the multibeam backscatter of Carlsberg Ridge(60°-61°E) and its indication on the tectonism and magmatism

  • YANG Chi1,2, HAN Xi-qiu1,2, WANG Ye-jian1,2, LI Hong-lin1,2, QIU Zhong-yan1,2, WU Zhao-cai1,2
Author information +
文章历史 +

摘要

多波束声纳数据可以有效记录海底地形地貌和底质特征信息。本文利用船载多波束数据对慢速扩张的卡尔斯伯格脊60°~61°E洋脊段的典型构造地貌单元的后向散射强度特征进行了研究,在此基础上,分析了该洋脊段的构造和岩浆作用强度特征。结果表明,洋脊段I以构造拉张作用占主导,脊轴及附近后向散射强度为-29 dB左右,裂谷壁高差可达1 200 m以上,裂谷内断裂发育,裂谷侧翼高度与裂谷宽度的比值为78.7~126.2,裂谷两侧翼部线性构造较少,但轴向正断层面更宽,倾角更小;与洋脊段裂谷中段相比,末端火山活动频率较低但喷发规模较大,火山机构数量和体积也更大,且可发育深大断裂获取深部热源。洋脊段II以岩浆作用占主导,脊轴及附近后向散射强度达-35 dB,裂谷内轴向火山脊发育,裂谷壁高差小于500 m,裂谷侧翼高度与裂谷宽度的比值为77.6~116.8,裂谷两侧翼部线性构造数量众多、长宽比较大且呈近似对称,相邻线性构造之间沉积物广泛分布。通过提取挖掘与底质属性密切相关的多波束后向散射强度数据,结合海底地形地貌的分析,可以为洋中脊的构造和岩浆作用强度的定量研究提供有效的证据。

Abstract

Multibeam sonar data can effectively reflect the features of seafloor topography and its substrates. The shipboard multibeam data were used to characterize the topography, geomorphology and the backscatter intensity characteristics of typical tectono-geographic units of the 60°-61°E segment in Carlsberg Ridge, Northwestern Indian Ocean, aiming to describe the strength of the magmatism and tectonism of the studied ridge segments. Basically, the 60°-61°E segment of Carlsberg Ridge showed symmetrical spreading with discontinuous zone. The Segment I was more influenced by tectonism, with more fractures occurred in the rift valley. The segment axis and nearby backscatter intensity reached -29 dB, with the rift wall height difference over 1 200 m. The segment also had deeper valley bottoms, higher rift valley walls, higher flank/width ratio (78.7-126.2) but less off-axial linear structures. In the rift flank, the normal fault plane was wider and the dip angle was smaller. Compared to the center of the segment, the volcanic activities in segment end had lower eruption frequency but larger eruption scale, and erupted volcanic edifices were larger in the aspect of number and volume. In contrast, the Segment II was dominated by magmatism with axial volcanic ridges and numerous symmetrically developed off-axial linear structures. The segment axis and nearby backscatter intensity reached -35 dB. The rift flank/width ratio was 77.6-116.8. The difference of the rift wall height was less than 500 m. The linear structures had relatively high aspect ratio, and were approximately symmetric on the flank of the rift. It is suggested that multibeam backscatter data combining with the topography analysis can provide quantitative evidence for the study of the strengths of the tectonism and magmatism of the mid-ocean ridge.

关键词

多波束后向散射 / 卡尔斯伯格脊 / 构造和岩浆作用 / 西北印度洋

Key words

multibeam backscatter / Carlsberg Ridge / tectonism and magmatism / Northwestern Indian Ocean

引用本文

导出引用
杨驰, 韩喜球, 王叶剑, 李洪林, 邱中炎, 吴招才. 卡尔斯伯格脊 60°~61°E洋脊段多波束后向散射特征及其对构造与岩浆作用强度的指示[J]. 海洋学研究. 2018, 36(3): 37-49 https://doi.org/10.3969/j.issn.1001-909X.2018.03.004
YANG Chi, HAN Xi-qiu, WANG Ye-jian, LI Hong-lin, QIU Zhong-yan, WU Zhao-cai. Characteristics of the multibeam backscatter of Carlsberg Ridge(60°-61°E) and its indication on the tectonism and magmatism[J]. Journal of Marine Sciences. 2018, 36(3): 37-49 https://doi.org/10.3969/j.issn.1001-909X.2018.03.004
中图分类号: P736   

参考文献

[1] SEARLE R C. Mid-ocean ridges[M]. Cambridge: Cambridge University Press, 2013:1-364.
[2] MURTON B J, RONA P A. Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow spreading centre analogues[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015,121: 71-84.
[3] HANNINGTON M, JAMIESON J, MONECKE T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011,39(12):1 155-1 158.
[4] GERMAN C, PETERSEN S, HANNINGTON M, et al. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming[J]? Chemical Geology, 2015,420:114-126.
[5] RAMANA M V, RAMPRASAD T, KAMESH R K A, et al. Geophysical studies over a segment of the Carlsberg Ridge, Indian Ocean[J]. Marine Geology, 1993,115(1):21-28.
[6] KAMESH R K A, CHAUBEY A K, AMARNATH D, et al. Morphotectonics of the Carlsberg Ridge between 62°20′ and 66°20′E, northwest Indian Ocean[J]. Marine Geology, 2008,252(3):120-128.
[7] FOURNIER M, PATRIAT P, LEROY S. Reappraisal of the Arabia–India–Somalia triple junction kinematics[J]. Earth and Planetary Science Letters, 2001,189(3):103-114.
[8] MURTON B J, BAKER E T, ANDS C M, et al. Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean[J]. Geophysical Research Letters, 2006,33:L10608.
[9] DURBAR R, KAMESH R K A, BAKER E T, et al. Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean[J]. Geochemistry Geophysics Geosystems, 2012, 3017(13):605-606.
[10] HAN Xi-qiu, WU Zhao-cai, QIU Bi-bo. The Segmentation of the Carlsberg Ridge in the Northwest Indian Ocean and its tectonic and geomorphologic characteristics——Introduction to China Oceans 24 Cruise Survey results[R]// Deep sea research and earth system science conference,2012.
韩喜球,吴招才,裘碧波.西北印度洋Carlsberg脊的分段性及其构造地貌特征——中国大洋24航次调查成果介绍[R]//深海研究与地球系统科学学术研讨会,2012.
[11] MACDONALD K C, SCHEIRER D S, CARBOTTE S M. Mid-ocean ridges: Discontinuities, segments and giant cracks[J]. Science, 1991,253:986-994.
[12] DETRICK R S, NEEDHAM H D, RENARD V. Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33°N and 40°N[J]. Journal of Geophysical Research, 1995,100(B3):3 767-3 787.
[13] GRACIA E, CHARLOU J, KNOERY J, et al. Non-transform offsets along the Mid-Atlantic Ridge south of the Azores(38°N-34°N): Ultramafic exposures and hosting of hydrothermal vents[J]. Earth and Planetary Science Letters, 2000,177(1-2):89-103.
[14] BEHN M D, ITO G. Magmatic and tectonic extension at mid-ocean ridges: 1. Controls on fault characteristics[J]. Geochemistry, Geophysics, Geosystems, 2008,9(8):1-22.
[15] URICK R J. Principles of underwater sound for engineers[M].3rd ed. New York: McGraw-Hill, 1983.
[16] JOHNSON H P, HELFERTY M. The geological interpretation of side-scan sonar[J]. Reviews Geophysics, 1990,28(4):357-380.
[17] LURTON X, LAMARCHE G. Backscatter measurements by seafloor-mapping sonars: Guidelines and recommendations, GeoHab Backscatter Working Group report[C]. 2015:1-200.
[18] MITCHELL N. The variation of backscatter with incidence angle for sonar data over MOR volcanics[C]// PURDY G M, FRYER G J. Proc. workshop on the physical properties of volcanic seafloor,1990: 175-179.
[19] MITCHELL N. A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar[J]. Journal of Geophysical Research, 1993,98(B12):22 477-22 493.
[20] GOFF J A, OLSON H C, DUNCAN C S. Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin[J]. Geo-Marine Letters, 2000,20(1):43-49.
[21] ELLINGSEN K E, GRAY J S, BJØRNBOM E. Acoustic classification of seabed habitats using the QTC VIEW System[J]. Journal of Marine Science, 2002,59(4):825-835.
[22] EDWARDS B D, DARTNELL P, CHEZAR H. Characterizing benthic substrates of Santa Monica Bay with seafloor photography and multibeam sonar imagery[J]. Marine Environmental Research, 2003,56(1):47-66.
[23] BEYER A, CHAKRABORTY B, SCHENKE H W. Seafloor classification of the mound and channel provinces of the Porcupine Seabight: an application of the multibeam angular backscatter data[J]. International Journal of Earth Sciences, 2007,96(1):11-20.
[24] LEE S H, KIM K H. Side-scan sonar characteristics and manganese nodule abundance in the Clarion-Clipperton Fracture Zones, NE Equatorial Pacific[J]. Marine Georesources and Geotechnology, 2004,22:100-114.
[25] CHAKRABORTY B, KODAGALI V. Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter[J]. Geo-Marine Letters, 2004,24:8-13.
[26] THOMAS K. Developing a strategy for the exploration of vast seafloor areas for prospective manganese nodule fields[C]//ZHOU H Y, MORGAN C L. Marine minerals: Finding the right balance of sustainable development and environmental protection.41st Conference of Underwater Mining Institute, Shanghai. 2012.
[27] ZHANG Guo-yin, TAO Chun-hui, LI Huai-ming, et al. Seafloor classification in hydrothermal field using multi-beam sonar[J]. Marine Geology Frontiers, 2012,28(7):59-65.
张国堙,陶春辉,李怀明,等.多波束声参数在海底热液区底质分类中的应用——以东太平洋海隆“宝石山”热液区为例[J]. 海洋地质前沿,2012,28(7):59-65.
[28] KODAMA T, MAEDA K. Interpretation of a backscattering image for the prospecting of Co-rich Manganese Crust[J]. The Journal of the Acoustical Society of America, 1996,100(4): 2 667.
[29] USUI A, OKAMOTO N. Geophysical and geological exploration of cobalt-rich ferromanganese crusts: An attempt of small-scale mapping on a Micronesian Seamount[J]. Marine Georesources and Geotechnology, 2010,28(3):192-206.
[30] YANG Yong, HE Gao-wen, ZHU Ke-chao, et al. Classification of seafloor geological types of Qianyu seamount from Mid-Pacific seamounts using multibeam backscatter intensity data[J]. Earth Science, 2016,41(4):718-728.
杨永,何高文,朱克超,等.利用多波束回波强度进行中太平洋潜鱼海山底质分类[J]. 地球科学, 2016,41(4):718-728.
[31] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. The Journal of the Chemical, Metallurgical and Mining Society of South Africa, 1951,52(6):119-139.
[32] MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963,58:1 246-1 266.
[33] WESSEL P, SMITH W H F, SCHARROO R, et al. Generic mapping tools: Improved version released, EOS Trans[J]. AGU, 2013,94(45):409-410.
[34] FONSECA L, CALDER B. Geocoder: an efficient backscatter mapconstructor[C]//Proc of Hydrographic 2005, Hydrographic Society of America, San Diego, CA, 2005.
[35] FONSECA L, MAYER L. Remote estimation of surficial seafloor properties through the application Angular Range Analysis to multibeam sonar data[J]. Marine Geophysical Researches, 2007,28:119-126.
[36] RZHANOV Y, FONSECA L, MAYER L. Construction of seafloor thematic maps from multibeam acoustic backscatter angular response data[J]. Computers and Geosciences, 2012,41:181-187.
[37] BEAUDOIN J D, CLARKE H J E, AMEELE V D, et al. Geometric and radiometric correction of multibeam backscatter derived from Reson 8101 Systems[C]. Canadian Hydrographic Conference, 2002:242.
[38] ANDERSON M, CHADWICK W W, HANNINGTON M D, et al. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N[J]. Geochemistry, Geophysics, Geosystems, 2017,18:1-35.
[39] WANG Ye-jian, HAN Xi-qiu, PETERSEN S, et al. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews, 2016,84:1-19.
[40] HAN Xi-qiu, WANG Ye-jian, Li Xiao-hu, et al. First ultramafic-hosted hydrothermal sulfide deposit discovered on the Carlsberg Ridge, Northwest Indian Ocean[R]. Hangzhou, 2015.
[41] PAULATTO M, CANALES J P, DUNN R A, et al. Heterogeneous and asymmetric crustal accretion: New constraints from multibeam bathymetry and potential field data from the Rainbow area of the Mid-Atlantic Ridge (36°15′N)[J]. Geochemistry, Geophysics, Geosystems, 2015,16(9):2 994-3 014.
[42] HUNG P, MONTEYS X, SCOTT G, et al. The use of multibeam backscatter angular response for marine sediment characterization by comparison with shallow electromagnetic conductivity[J]. Applied Acoustics, 2016,112:181-191.
[43] GALLAUDET T C, MOUSTIER C P. Multibeam volume acoustic backscatter imagery and reverberation measurements in the northeastern Gulf of Mexico[J]. The Journal of the Acoustical Society of America, 2002,112(2):489-503.
[44] EASON D E, DUNN R A, CANALES J P, et al. Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, Mid-Atlantic Ridge Rainbow region (35°45′-36°35′N) [J]. Geochemistry, Geophysics, Geosystems, 2016,17(9):3 560-3 579.
[45] ZHAO Jian-hu, LIU Jing-nan. Multi-beam bathymetry and image data processing[M]. Wuhan: Wuhan University Press,2008:1-374.
赵建虎,刘经南.多波束测深及图像数据处理[M]. 武汉:武汉大学出版社,2008:1-374.
[46] RONA P A, MURTON B J, BOSTROM K, et al. Carslberg Ridge and Mid-Atlantic Ridge: Slow-spreading Apparent Analogs[C]. AGU Fall Meeting Abstracts. 2005:1 455.
[47] MORGAN J P, PARMENTIER E M, LIN J, et al. Mechanisms for the origin of mid-ocean ridge axial topography: Implications for the thermal and mechanical structure of accreting plate boundaries[J]. Journal of Geophysical Research, 1987,92(B12):12 823-12 836.
[48] CHEN Yong-shun, MORGAN W J. A nonlinear rheology model for mid-ocean ridge axis topography[J]. Journal of Geophysical Research: Solid Earth, 1990,95(B11):17 583-17 604.
[49] HOOFT E E E, DETRICK R S. Relationship between axial morphology, crustal thickness, and mantle temperature along the Juan de Fuca and Gorda Ridges[J]. Journal of Geophysical Research: Solid Earth, 1995,100(B11):22 499-22 508.
[50] YEO I. Axial volcanic ridges[M]//HARFF J, MESCHEDE M, PETERSEN S, et al. Encyclopedia of marine geosciences, 2014:36-39.
[51] SPENCER S, SMITH D K, CANN J R, et al. Structure and stability of non-transform discontinuities on the Mid Atlantic Ridge between 24°N and 30°N[J]. Marine Geophysical Research, 1997,19:339-362.
[52] PARSON L, GRACIA E, COLLER D, et al. Second-order segmentation; the relationship between volcanism and tectonism at the MAR, 38°N-35°40′N[J]. Earth and Planetary Science Letters, 2000,178:231-251.
[53] WHITE S M, MASON J L, MACDONALD K C, et al. Significance of widespread low effusion rate eruptions over the past two million years for delivery of magma to the overlapping spreading centers at 9°N East Pacific Rise[J]. Earth and Planetary Science Letters, 2009,280:175-184.
[54] COLMAN A, SINTON J M, WHITE S M, et al. Effects of variable magma supply on mid-ocean ridge eruptions: Constraints from mapped lava flow fields along the Galapagos Spreading Center[J]. Geochemistry, Geophysics, Geosystems, 2012,13(8):1-28.
[55] BONATTI E, HARRISON C G A. Eruption styles of basalts in oceanic spreading ridges and seamounts: Effect of magma temperature and viscosity[J]. Journal of Geophysical Research,1988, 93(B4):2 967-2 980.
[56] GREGG T K P, FINK J H. Quantification of submarine lava-flow morphology through analog experiments[J]. Geology, 1995,23(1):73-76.
[57] LANGMUIR C H, HAMELIN C, CHEN Z, et al. Do ridge segments with asymmetric and symmetric spreading have distinctive geochemical signatures[C]?AGU Fall Meeting Abstracts, 2013:1.
[58] SEARLE R C, COWIE P A, MITCHELL N C, et al. Fault structure and detailed evolution of a slow spreading ridge segment: The Mid-Atlantic Ridge at 29°N [J]. Earth and Planetary Science Letters, 1998,154(1):167-183.
[59] ALLERTON S, ESCARTÍN J, SEARLE R C. Extremely asymmetric magmatic accretion of oceanic crust at the ends of slow-spreading ridge segments[J]. Geology, 2000, 28(2):179-182.
[60] ALLERTON S, MURTON B J, SEARLE R C, et al. Extensional faulting and segmentation of the Mid-Atlantic Ridge north of the Kane Fracture Zone (24° 00′ N to 24° 40′ N)[J]. Marine Geophysical Research, 1995, 17(1):37-61.

基金

大洋"十三五"资源环境类重大项目资助(DY135-S2-1)

PDF(5912 KB)

Accesses

Citation

Detail

段落导航
相关文章

/