水下机器人的耐压舱设计要求在满足总体指标的前提下,最大限度地提高设计强度与稳定性,同时尽可能降低质量。本文使用ANSYS Workbench中的Design Explorer模块,对耐压舱进行快速优化设计,一次获得多个优化候选结果,经过对比分析得到最优设计方案。然后,针对装配形式进行接触分析,确保大压力条件下结构不会在接触面发生失效破坏。最后,对舱体结构进行稳定性分析,确保结构能够在大深度环境中不发生失稳破坏。本研究为水下机器人耐压舱体快速优化设计、强度和稳定性校核提供了参考。
Abstract
The design of compressive cabin which is used in the underwater vehicle requires that the design strength and stability can be improved to the maximum, and the weight can be reduced as much as possible to satisfy the requirements of the overall index. The Design Explorer Module in ANSYS Workbench was used for the fast optimization design of the compressive cabin, and a number of optimal candidate results were obtained at one time. The optimal design scheme was obtained by comparison and analysis. Then, contact analysis was carried out in the form of assembly to ensure that the structure would not fail under the condition of high pressure. Finally, the stability analysis of the cabin structure was carried out to ensure that the structure could not cause instability failure in a large depth environment. The result of this study provides the reference for rapid optimization design, strength and stability checking of the underwater vehicle's compressive cabin.
关键词
水下机器人 /
优化设计 /
接触分析 /
屈曲分析
Key words
underwater vehicle /
optimal design /
contact analysis /
buckling analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG Hong-bin, XU Hui-xi, CHEN Zhong, et al. Optimal design and drag analysis of 6000 m level detection AUV[J]. Journal of Ocean Technology, 2017, 36(1): 47-51.
张洪彬,徐会希,陈仲,等. 6000 m级探测型AUV优化设计与阻力分析[J]. 海洋技术学报, 2017 ,36(1):47-51.
[2] LI Liang-bi, WANG Ren-hua, YU Ming-hua, et al. Nonlinear finite element analysis of pressure spherical shell of deep-sea manned submersible[J]. Shipbuilding China, 2005, 46(4): 11-18.
李良碧,王仁华,俞铭华,等.深海载人潜水器耐压球壳的非线性有限元分析[J].中国造船,2005,46(4):11-18.
[3] YU Yan-jiang, ZHANG Zhi-gang, XU Xing, et al. Design of deep-sea pressure chamber [J]. Marine Technology, 2010, 29(2): 33-35.
于彦江,张志刚,徐行,等.深海耐压仪器舱的设计[J]. 海洋技术,2010,29(2):33-35.
[4] GOU Peng, CUI Wei-cheng. Study on structural optimization of multi-sphere handover pressure hulls[J]. Ship Mechanics, 2009, 13(4): 269-277.
苟鹏,崔维成.多球交接耐压壳结构优化问题的研究[J].船舶力学,2009,13(4):269-277.
[5] China Classification Society. Standards for classification and construction of submersible systems and vehicles[S]. Beijing: People's Communications Publishing House, 1996.
中国船级社.潜水系统和潜水器入级与建造规范[S]. 北京:人民交通出版社,1996.
[6] State Technical Supervision Bureau.GB150-1998 Steel pressure vessel[S]. Beijing: China Standard Press, 1998.
国家技术监督局.GB150-1998钢制压力容器[S]. 北京:中国标准出版社,1998.
[7] YANG Zhuo-yi, PANG Yong-jie. Structural design of deep sea ballast cabin with titanium alloy[J]. Marine Engineering, 2015, 4(2): 64-66.
杨卓懿,厐永杰. 钛合金深海耐压舱结构设计[J]. 船海工程,2015,4(2):64-66.
[8] SHI De-pei, LI Chang-chun. Structural strength of submersible[M]. Shanghai: Shanghai Jiaotong University Press, 1991: 52-76.
施德培,李长春. 潜水器结构强度[M]. 上海:上海交通大学出版社,1991:52-76.
基金
国家高技术研究发展计划(“863计划”)资助(2011AA09A102)