海洋学研究 ›› 2018, Vol. 36 ›› Issue (3): 84-88.DOI: 10.3969/j.issn.1001-909X.2018.03.009

• 研究论文 • 上一篇    下一篇

水下机器人耐压舱优化设计与结构分析

张洪彬1,2, 徐会希1,2, 陈仲1,2   

  1. 1.中国科学院 沈阳自动化研究所,辽宁 沈阳 110016;
    2.机器人学国家重点实验室,辽宁 沈阳 110016
  • 收稿日期:2018-01-26 修回日期:2018-05-23 出版日期:2018-09-15 发布日期:2022-11-26
  • 作者简介:张洪彬(1988-),男,内蒙古赤峰市人,助理研究员,主要从事水下机器人结构设计方面的研究。E-mail:zhanghongbin@sia.cn
  • 基金资助:
    国家高技术研究发展计划(“863计划”)资助(2011AA09A102)

Optimization design and structure analysis for pressure cabin of underwater vehicle

ZHANG Hong-bin1,2, XU Hui-xi1,2, CHEN Zhong1,2   

  1. 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2. State Key Laboratory of Robotics, Shenyang 110016, China
  • Received:2018-01-26 Revised:2018-05-23 Online:2018-09-15 Published:2022-11-26

摘要: 水下机器人的耐压舱设计要求在满足总体指标的前提下,最大限度地提高设计强度与稳定性,同时尽可能降低质量。本文使用ANSYS Workbench中的Design Explorer模块,对耐压舱进行快速优化设计,一次获得多个优化候选结果,经过对比分析得到最优设计方案。然后,针对装配形式进行接触分析,确保大压力条件下结构不会在接触面发生失效破坏。最后,对舱体结构进行稳定性分析,确保结构能够在大深度环境中不发生失稳破坏。本研究为水下机器人耐压舱体快速优化设计、强度和稳定性校核提供了参考。

关键词: 水下机器人, 优化设计, 接触分析, 屈曲分析

Abstract: The design of compressive cabin which is used in the underwater vehicle requires that the design strength and stability can be improved to the maximum, and the weight can be reduced as much as possible to satisfy the requirements of the overall index. The Design Explorer Module in ANSYS Workbench was used for the fast optimization design of the compressive cabin, and a number of optimal candidate results were obtained at one time. The optimal design scheme was obtained by comparison and analysis. Then, contact analysis was carried out in the form of assembly to ensure that the structure would not fail under the condition of high pressure. Finally, the stability analysis of the cabin structure was carried out to ensure that the structure could not cause instability failure in a large depth environment. The result of this study provides the reference for rapid optimization design, strength and stability checking of the underwater vehicle's compressive cabin.

Key words: underwater vehicle, optimal design, contact analysis, buckling analysis

中图分类号: