[1] CAI Wen-ju, BAINES P G. Forcing of the Antarctic Circumpolar Wave by El Niño-Southern Oscillation teleconnections[J]. Journal of Geophysical Research Oceans, 2001,106(C5): 9 019-9 038. [2] DONEY S C, RUCKELSHAUS M, DUFFY J E, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012,4(1): 11-37. [3] MATSON P G, MARTZ T R, HOFMANN G E. High-frequency observations of pH under Antarctic sea ice in the southern Ross Sea[J]. Antarctic Science, 2011,23(6): 607-613. [4] STAMMERJOHN S E, MARTINSON D G, SMITH R C, et al. Trends in Antarctic annual sea ice retreat and advance and their relation to ENSO and Southern Annular Mode variability[J]. Journal of Geophysical Research Oceans, 2008,113(C3):1-20. [5] SMITH W O, AINLEY D G, ARRIGO K R, et al. The Oceanography and ecology of the Ross Sea[J]. Annual Review of Marine Science, 2014,6(1): 469-487. [6] SMITH W O, SEDWICK P N, ARRIGO K R, et al. The Ross Sea in a sea of change[J]. Oceanography, 2012,25(3): 90-103. [7] ZHAO Jun, HAN Zheng-bing, PAN Jian-ming. Spatial and temporal variation of phytoplankton indicated by multi-proxies in Prydz Bay, Antarctica[J].Research of Environmental Sciences, 2014,27(6): 589-594. 赵军, 韩正兵, 潘建明. 多参数指示南极普里兹湾浮游植物的时空变化[J]. 环境科学研究, 2014,27(6): 589-594. [8] DEMASTER D J, RAGUENEAU O, NITTROUER C A. Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: The Ross Sea[J]. Journal of Geophysical Research Oceans, 1996,101(C8): 18 501-18 518. [9] LIU Rui-juan, YU Pei-song, HU Chuan-yu, et al. Contents and distributions of organic carbon and total nitrogen in sediments of Prydz Bay, Antarctic[J]. Acta Oceanologica Sinica, 2014,36(4): 118-125. 刘瑞娟, 于培松, 扈传昱, 等. 南极普里兹湾沉积物中有机碳和总氮的含量与分布[J]. 海洋学报, 2014,36(4): 118-125. [10] HAN Xi-bin, ZHAO Jun, CHU Feng-you, et al. The source of organic matter and its sedimentary environment of the bottom surface sediment in northeast waters to Antarctic Peninsula based on the biomarker features[J]. Acta Oceanologica Sinica, 2015,37(8): 26-38. 韩喜彬, 赵军, 初凤友, 等. 南极半岛东北海域表层沉积有机质来源及其沉积环境[J]. 海洋学报, 2015,37(8): 26-38. [11] YANG Zheng, YU Pei-song, PAN Jian-ming, et al. Contents and distribution of GDGTs and the index application of TEX86 in surface sediments of Prydz Bay, Antarctic[J].Journal of Marine Sciences, 2017,35(1):47-54. 杨峥, 于培松, 潘建明, 等. 南极普里兹湾表层沉积物GDGTs含量分布与TEX86指标应用研究[J]. 海洋学研究, 2017,35(1): 47-54. [12] LU Bin, ZHOU Huai-yang, CHEN Rong-hua, et al. The composition characteristics of n-alkanes in the modern sediments of the Arctic and the comparison with that of sea areas of different latitudes[J].Chinese Journal of Polar Research, 2004,16(4): 281-294. 卢冰, 周怀阳, 陈荣华, 等. 北极现代沉积物中正构烷烃的分子组合特征及其与不同纬度的海域对比[J]. 极地研究, 2004,16(4): 281-294. [13] XIE Shu-cheng, LIANG Bin, GUO Jian-qiu, et al. Biomarker and the related global change[J]. Quaternary Sciences, 2003,23(5): 521-528. 谢树成, 梁斌, 郭建秋,等. 生物标志化合物与相关的全球变化[J]. 第四纪研究, 2003,23(5): 521-528. [14] SCHOUTEN S, HOPMANS E C, SCHEFUβ E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures[J]? Earth and Planetary Science Letters, 2002,204(s 1-2): 265-274. [15] GE Huang-min, ZHANG Chuan-lun. Advances in GDGTs research in Chinese marginal sea: A review[J].Science China Earch Sciences, 2016,46(4):473-488. 葛黄敏, 张传伦. 中国边缘海环境中GDGT的研究进展[J]. 中国科学:地球科学, 2016,46(4): 473-488. [16] ZHU C, WEIJERS J W H, WAGNER T, et al. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin[J]. Organic Geochemistry, 2011,42(4): 376-386. [17] SCHOUTEN S, HOPMANS E C, DAMSTÉ J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013,54(1): 19-61. [18] KIM J H, SCHOUTEN S, HOPMANS E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008,72(4): 1 154-1 173. [19] KIM J H, VAN DER MEER J, SCHOUTEN S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010,74(16): 4 639-4 654. [20] TIERNEY J E, TINGLEY M P. A Bayesian, spatially-varying calibration model for the TEX86 proxy[J]. Geochimica et Cosmochimica Acta, 2014,127(3): 83-106. [21] HOPMANS E C, WEIJERS J W H, SCHEFUB E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004,224(1-2): 107-116. [22] WEIJERS J W H, SCHOUTEN S, SPAARGAREN O C, et al. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006,37(12): 1 680-1 693. [23] RUEDA G, ROSELL-MELÉ A, ESCALA M, et al. Comparison of instrumental and GDGT-based estimates of sea surface and air temperatures from the Skagerrak[J]. Organic Geochemistry, 2009,40(2): 287-291. [24] HEDLUND B P, LI W J, ZHANG C. Addressing questions on life in terrestrial geothermal systems[J]. Eos Transactions American Geophysical Union, 2013,94(37): 325. [25] GE Huang-min, ZHANG Chuan-lun, LI Jun, et al. Tetraether lipids from the southern Yellow Sea of China: Implications for the variability of East Asia Winter Monsoon in the Holocene[J]. Organic Geochemistry, 2014,70(5): 10-19. [26] PARK Y H, YAMAMOTO M, NAM S I, et al. Distribution, source and transportation of glycerol dialkyl glycerol tetraethers in surface sediments from the western Arctic Ocean and the northern Bering Sea[J]. Marine Chemistry, 2014,165: 10-24. [27] HO S L. Reconstructing sea surface temperature in the South Pacific using organic proxies[D]. Universität Bremen, 2012. [28] HARADA N, SATO M, SEKI O, et al. Sea surface temperature changes in the Okhotsk Sea and adjacent North Pacific during the last glacial maximum and deglaciation[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012,61-64: 93-105. [29] SHINTANI T, YAMAMOTO M, CHEN M T. Paleo environmental changes in the northern South China Sea over the past 28,000 years: A study of TEX86-derived sea surface temperatures and terrestrial biomarkers[J]. Journal of Asian Earth Sciences, 2011,40(6): 1 221-1 229. [30] HUGUET C, SCHIMMELMANN A, THUNELL R, et al. A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California[J]. Paleoceanography, 2007,22(3): 150-173. [31] LENGGER S K, HOPMANS E C, DAMSTÉ J S S, et al. Impact of sedimentary degradation and deep water column production on GDGT abundance and distribution in surface sediments in the Arabian Sea: Implications for the TEX86 paleothermometer[J]. Geochimica et Cosmochimica Acta, 2014,142(142): 386-399. [32] KIM J H, ROMERO O E, LOHMANN G, et al. Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard-Oeschger interstadials[J]. Earth and Planetary Science Letters, 2012, 339-340(4): 95-102. [33] ZHANG Jie, BAI Yang, XU Shen-dong, et al. Alkenone and tetraether lipids reflect different seasonal seawater temperatures in the coastal northern South China Sea[J]. Organic Geochemistry, 2013,58: 115-120. [34] HUGUET C, KIM J H, DE LANGE G J, et al. Effects of long term oxic degradation on the Uk37, TEX86 and BIT organic proxies[J]. Organic Geochemistry, 2009,40(12): 1 188-1 194. [35] LENGGER S K, KRAAIJ M, TJALLINGII R, et al. Differential degradation of intact polar and core glycerol dialkyl glycerol tetraether lipids upon post-depositional oxidation[J]. Organic Geochemistry, 2013,65(6): 83-93. [36] WANG Shou-gang, WANG Ru-jian, CHEN Jian-fang, et al. Spatial distribution patterns of GDGTs in the surface sediments from the Bering Sea and Arctic Ocean and their environmental significances[J]. Advances in Earth Science, 2013,28(2): 282-295. 王寿刚, 王汝建, 陈建芳, 等. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013,28(2): 282-295. [37] ETOURNEAU J, COLLINS L G, WILLMOTT V, et al. Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by insolation and ENSO variability changes[J]. Climate of the Past, 2013,9: 1 431-1 446. [38] ORSI A H, WHITWORTH T, NOWLIN W D. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995,42(5): 641-673. [39] CARLSON C A, HANSELL D A, PELTZER E T, et al. Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica[J]. Deep Sea Research Part II Topical Studies in Oceanography, 2000,47(15-16): 3 201-3 225. [40] ARRIGO K R, DITULLIO G R, DUNBAR R B, et al. Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea[J]. Journal of Geophysical Research Atmospheres, 2000,105(C4): 8 827-8 846. [41] HOPMANS E C, SCHOUTEN S, DAMSTÉ J S. The effect of improved chromatography on GDGT-based palaeoproxies[J]. Organic Geochemistry, 2016,93: 1-6. [42] ARRIGO K R, VAN DIJKEN G L. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004,51(1): 117-138. [43] PARISH T R, BROMWICH D H. The surface windfield over the Antarctic ice sheets[J]. Nature, 1987,328(6125): 51-54. [44] ARRIGO K R, WEISS A M, SMITH W O. Physical forcing of phytoplankton dynamics in the southwestern Ross Sea[J]. Journal of Geophysical Research Oceans, 1998,103(C1): 1 007-1 021. [45] WUCHTER C, ABBAS B, COOLEN M J L, et al. Archaeal nitrification in the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(33): 12 317-12 322. [46] ARRIGO K R. Marine microorganisms and global nutrient cycles[J]. Nature, 2005,437(7057): 349-356. [47] BLAGA C I, REICHART G J, HEIRI O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect[J]. Journal of Paleolimnology, 2009,41(3): 523-540. [48] DAMSTÉ J S S, OSSEBAAR J, ABBAS B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta, 2009,73(14): 4 232-4 249. [49] DUCKLOW H, CARLSON C, CHURCH M, et al. The seasonal development of the bacterioplankton bloom in the Ross Sea, Antarctica, 1994-1997[J]. Deep Sea Research Part II Topical Studies in Oceanography, 2001,48(19-20): 4 199-4 221. [50] DUCKLOW H W. The bacterial component of the oceanic euphotic zone[J]. Fems Microbiology Ecology, 1999,30(30): 1-10. [51] DONG Liang, LI Qian-yu, LI Li, et al. Glacial-interglacial contrast in MBT/CBT proxies in the South China Sea: Implications for marine production of branched GDGTs and continental teleconnection[J]. Organic Geochemistry, 2015,79: 74-82. [52] FIETZ S, HUGUET C, BENDLE J, et al. Co-variation of crenarchaeol and branched GDGTs in globally-distributed marine and freshwater sedimentary archives[J]. Global and Planetary Change, 2012,92-93: 275-285. [53] YU Xiao-guo, BIAN Ye-ping, RUAN Xiao-yan, et al. Glycerol Dialkyl Glycerol Tetraethers and TEX86 index in surface sediments of the Arctic Ocean and the Bering Sea[J]. Marine Geology and Quaternary Geology, 2015,35(3): 11-22. 于晓果, 边叶萍, 阮小燕, 等. 北冰洋沉积物中四醚脂类来源与TEX86指数初步研究[J]. 海洋地质与第四纪地质, 2015,35(3): 11-22. [54] HO S L, MOLLENHAUER G, FIETZ S, et al. Appraisal of TEX86 and TEXL 86thermometries in subpolar and polar regions[J]. Geochimica et Cosmochimica Acta, 2014,131(5): 213-226. [55] KIM J H, CROSTA X, WILLMOTT V, et al. Holocene subsurface temperature variability in the eastern Antarctic continental margin[J]. Geophysical Research Letters, 2012,39(6): 70-82. [56] SHEVENELL A E, INGALLS A E, DOMACK E W, et al. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula[J]. Nature, 2011,470(7333): 250-254. |