Resonance in the Yueqing Bay generated by March 11 Japan Tsunami
LIU Yong1, LU Wen-fang*2,3, YING Chao1, LI Xin-wen1, YAO Wen-wei1
Author information+
1. Zhejiang Institute of Hydraulics & Estuary, Hangzhou 310020,China; 2. National & Local Joint Engineering Research Center of Satellite Geospatial Information Technology, Fuzhou University, Fuzhou 350116, China; 3. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350116, China
In this study, a numerical model based on TELEMAC-2D was developed for the Pacific Ocean and the China Seas to simulate the propagation of the tsunami wave of the Honshu (Japan) tsunami event on March 11th, 2011. After validated against in-situ observation data from buoys, the influence of this event on the Yueqing Bay was investigated. By using a spectrum analysis, the amplitudes and phases of the resonance waves in the Yueqing Bay were found with the dominating periods of 240 min, 180 min and 103 min. A regional model driven by a white-noise-like boundary condition further elucidated the property of the natural oscillation at these periods, further supporting the finding of the three resonance modes. Moreover, the white-noise-driven model suggested that maximum amplitudes would appear both in the upper bay and at the bay mouth when tsunami disasters occurred. The conclusion of this paper can be instructive for disaster management and reduction of local governance.
LIU Yong, LU Wen-fang, YING Chao, LI Xin-wen, YAO Wen-wei.
Resonance in the Yueqing Bay generated by March 11 Japan Tsunami[J]. Journal of Marine Sciences. 2019, 37(3): 31-39 https://doi.org/10.3969/j.issn.1001-909X.2019.03.004
中图分类号:
P731.25
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] State Oceanic Administration. Bulletin of China marine disaster in 2011[M]. 2012. 国家海洋局. 2011年中国海洋灾害公报[M]. 2012. [2] LU Wen-fang, JIANG Yu-wu, LIN Jian. Modeling propagation of 2011 Honshu tsunami[J]. Eng Appl Comp Fluid, 2013, 7(4): 507-518. [3] CHEN Chang-sheng, LAI Zhi-gang, BEARDSLEY R C, et al. The March 11, 2011 Tōhoku M 9.0 earthquake-induced tsunami and coastal inundation along the Japanese coast: A model assessment[J]. Progress in Oceanography, 2014, 123:84-104. [4] GRILLI S T, HARRIS J C, TAJALLI BAKHSH T S, et al. Numerical simulation of the 2011 Tohoku Tsunami based on a new transient FEM Co-seismic source: Comparison to far- and near-field observations[J]. Pure Appl Geophys, 2013, 170(6): 1 333-1 359. [5] TANG L, TITOV V V, CHAMBERLIN C D. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting[J]. J Geophys Res, 2009, 114(C12): 1-22. [6] YAMAZAKI Y, CHEUNG K F, PAWLAK G, et al. Surges along the Honolulu coast from the 2011 Tohoku tsunami[J]. Geophysical Research Letters, 2012, 39(9): 1-7. [7] YAMAZAKI Y, LAY T, CHEUNG K F, et al. Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake[J]. Geophys Res Lett, 2011, 38(7): 1-6. [8] YUAN Chun-guang, WANG Yi-gang, HUANG Hui-ming, et al. Impact of “311” Japan tsunami on northern Jiangsu coast[J]. The Ocean Engineering, 2013,31(6):68-75. 袁春光, 王义刚, 黄惠明, 等. 日本“311”海啸对江苏北部沿海影响分析[J]. 海洋工程, 2013, 31(6): 68-75. [9] MAO Xian-zhong, ZHU Qian, WEI Yong. Risk analysis of potential regional earthquake tsunami on the coast of Zhejiang Province[J]. Haiyang Xuebao, 2015, 37(3);37-45. 毛献忠, 祝倩, WEI Yong. 浙江沿海潜在区域地震海啸风险分析[J]. 海洋学报, 2015, 37(3): 37-45. [10] LAU Dickshum, MOK Hingyim. Development of Tsunami Numerical Model in Hong Kong Model Verification by Using a Japan 3.11 Tsunami Case[J]. South China Journal of Selsmology, 2015, 35(1): 6-13. 刘廸森, 莫庆炎. 香港海啸数值模型发展——以日本3.11海啸为主要案例对模型的验证[J]. 华南地震, 2015, 35(1): 6-13. [11] WANG Pei-tao, YU Fu-jiang, ZHAO Lian-da, et al. Numerical analysis of tsunami propagating generated by the Japan Mw 9.0 earthquake on Mar,11 in 2011 and its impact on China coasts[J]. Chinese Journal of Geophysics, 2012, 55(9): 3 088-3 096. 王培涛, 于福江, 赵联大, 等. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J]. 地球物理学报, 2012, 55(9): 3 088-3 096. [12] OISHI Y, PIGGOTT M D, MAEDA T, et al. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model[J]. Journal of Geophysical Research Solid Earth, 2013, 118(6): 2 998-3 018. [13] MARINE L G,DAMIEN V,RIADH A,et al. Shallow water numerical models for the 1947 gisborne and 2011 Tohoku-Oki tsunamis with kinematic seismic generation[J]. Coastal Engineering, 2018, 139:1-15. [14] ENDOH T, INAZU D, WASEDA T, et al. A parameter quantifying radiation damping of bay oscillations excited by incident tsunamis[J]. Cont Shelf Res, 2018, 157:10-19. [15] SUTHERLAND G, GARRETT C, FOREMAN M. Tidal resonance in Juan de Fuca Strait and the Strait of Georgia[J]. J Phys Oceanogr, 2005, 35(7): 1 279-1 286. [16] HERVOUET J M. Hydrodynamics of free surface flows: Modelling with the Finite Element Method[M]. New York: Wiley , 2007. [17] ENGWIRDA D. JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere[J]. Geoscientific Model Development, 2017, 10(6): 2 117-2 140. [18] WESSEL P, SMITH W H. A global, self-consistent, hierarchical, high-resolution shoreline database[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B4): 8 741-8 743. [19] WANG Pei-tao, YU Fu-jiang, YUAN Ye, et al. Effects of finite fault rupture models of submarine earthquakes on numerical forecasting of near-field tsunami[J]. Chinese Journal of Geophysics, 2015, 59(3):1 030-1 045. 王培涛, 于福江, 原野, 等. 海底地震有限断层破裂模型对近场海啸数值预报的影响[J]. 地球物理学报, 2016, 59(3): 1 030-1 045. [20] YAMAZAKI Y, CHEUNG K F. Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake[J]. Geophysical Research Letters, 2011, 38(12): 564-570. [21] HEIDARZADEH M, SATAKE K, TAKAGAWA T, et al. A comparative study of far-field tsunami amplitudes and ocean-wide propagation properties: insight from major trans-Pacific tsunamis of 2010–2015[J]. Geophysical Journal International,2018, 215(1): 22-36. [22] WEI Feng-ying. Modern climatological statistical diagnosis and prediction methods[M]. Beijing: China Meteorological Press, 1999. 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999. [23] WANG Gang, GAO Jun-liang, WANG Pei-tao, et al. Review on harbor resonance[J]. Haiyang Xuebao, 2017, 39(11): 1-13. 王岗, 高俊亮, 王培涛, 等. 港湾共振研究综述[J]. 海洋学报, 2017, 39(11): 1-13. [24] YAMAZAKI Y, CHEUNG K F, PAWLAK G, et al. Correction to “Surges along the Honolulu coast from the 2011 Tohoku tsunami”[J]. Geophysical Research Letters, 2013, 40(16): 4 367. [25] BELLOTTI G, BRIGANTI R, BELTRAMI G M, et al. Modal analysis of semi-enclosed basins[J]. Coastal Engineering, 2012, 64(6): 16-25. [26] BELLOTTI G, BRIGANTI R, BELTRAMI G M. The combined role of bay and shelf modes in tsunami amplification along the coast[J]. Journal of Geophysical Research Oceans, 2012, 117(C8): 1-13. [27] YANG Wan-kang, YI Xiao-fei, CHEN Zhong-biao. Calculation and study of resonant period in semi-closed bay[J]. Marine Sciences, 2017, 41(7): 71-77. 杨万康, 伊小飞, 陈忠彪. 半封闭海湾共振周期计算与研究[J]. 海洋科学, 2017, 41(7): 71-77. [28] MINH N N, PATRICK M, FLORENT L, et al. Tidal characteristics of the gulf of Tonkin[J]. Cont Shelf Res, 2014, 91:37-56. [29] RAO D B, SCHWAB D J. Two dimensional normal modes in arbitrary enclosed basins on a rotating earth: application to Lakes Ontario and Superiror[J]. Phil Trans R Soc Lond A, 1976, 281(1 299): 63-96. [30] GIERLEVSEN T, HEBSGAARD M, KIRKEGAARD J. Wave disturbance modelling in the port of Sines, Portugal-with special emphasis on long period oscillations[J]. Proceedings International Conference on Port and Maritime R&D and Technolog, 2001, 29(13):1-8. [31] DENG Qiang, ZHANG Ning-chuan. Numerical simulation on harbor resonance in Dayaowan harbor of Dalian[J]. Port & Waterway Engineering, 2015,1:25-31. 邓蔷, 张宁川. 大连大窑湾港湾振荡数值模拟研究[J]. 水运工程, 2015, 1: 25-31.