海底电缆穿越底质坚硬海床时,覆盖混凝土联锁排可以有效保护海缆。根据国网舟山500 kV海底输电电缆所在海域实测水文数据,采用力学平衡公式和数值模拟两种计算方法,研究混凝土块在极端水流作用下的在位稳定性。基于推导出的力学平衡公式,对其进行函数分析后发现,当混凝土块底边固定时,存在一个极值高度,此时铺设在海床的混凝土块最为稳定,可以抵挡的水流流速最大。通过数值模拟,研究了混凝土联锁排在水流作用下的三维流态特征,对不同形状混凝土块的受力情况进行比较后发现,当混凝土块边缘为圆角时,可以改变边缘周边的水流结构,总体上加强混凝土块的稳定性。经计算,尽管国网舟山500 kV海底输电电缆所在的灰鳖洋海域潮流流速较大,但常规长、宽、高为0.4 m×0.4 m×0.3 m的块体组成的混凝土联锁排可以抵抗水流的冲击,保护海底电缆。
Abstract
When the submarine cable passes through the hard bottom seabed, covering the concrete interlocking mattress can effectively protect it. According to the measured hydrological data in the sea area of the state grid corporation of 500 kV submarine cable project, two methods were used to study the stability of the concrete interlocking mattress under the extreme flow. Based on function analysis of the mechanical balance, it is found that when the bottom length of the concrete block is fixed, there is an extreme height. At this time the concrete block laid on seabed is the most stable, and also the flow velocity that can be resisted is the largest. Through numerical simulation, the three-dimensional flow characteristics of concrete interlocking mattress in current were studied. After comparing the force situation of different shape concrete blocks, it is found that when the edge of the concrete block is rounded, the flow structure around the edge can be changed, and the stability of the concrete block can be strengthened in general. Although the current velocity in the sea area of the state grid corporation of 500 kV submarine cable project is large, the conventional size of 0.4 m×0.4 m×0.3 m blocks can resist the impact of the current and protect the submarine cable.
关键词
混凝土联锁排 /
海底高压电缆 /
防护 /
稳定性
Key words
concrete interlocking mattress /
submarine high voltage cable /
protection /
stability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHENG Xin-long, LI Shi-qiang, JING Qiang, et al. Damage analysis and protection of submarine power cable[J]. Electrical Engineering, 2013(12):86-88.
郑新龙, 李世强, 敬强,等. 海底电力电缆的损伤分析与防护[J]. 电气技术, 2013(12):86-88.
[2] XUAN Yao-wei, LI Shi-qiang, HE Xu-tao, et al. A cover plate for submarine cable protection: CN 103236671 A[P]. 2013.
宣耀伟, 李世强, 何旭涛,等. 一种用于海底电缆保护的盖板: CN 103236671 A[P]. 2013.
[3] SPRAGUE C J, KOUTSOURAIS M M. Fabric formed concrete revetment systems[J]. Geotextiles and Geomembranes, 1992, 11(6):587-609.
[4] MCDOUGAL W G, FRANK A. Concrete armor mats: large-scale wave tank tests wave stability tests[C]//Fifth Symposium on Coastal and Ocean Management, 1987: 1 617-1 629.
[5] LEIDERSDORF C B, MCDOUGAL W G. Articulated concrete mat slope protection[C]//Twenty First Costal Engineering Conference, 1988: 2 400-2 415.
[6] LEIDERSDORF C B, GADD P E. Arctic slope protection methods[C]//22nd International Conference on Coastal Engineering, 1990: 1 687-1 701.
[7] WU Su-shu, ZHANG Wei, LI Guo-chen. Research on the thickness of the concrete slab mattress under the action of wave[J]. China Harbour Engineering, 2006, 143(3): 5-8.
吴苏舒, 张玮, 李国臣. 波浪作用下混凝土联锁排稳定厚度研究[J]. 中国港湾建设, 2006, 143(3): 5-8.
[8] ZHANG Zong-feng, DING Hong-yan, LIU Jin-kun. Model test on concrete slab interlocking mattress applied in anti-scour protection of subsea pipeline[J]. The Ocean Engineering, 2015, 33(2):77-83.
张宗峰, 丁红岩, 刘锦昆. 混凝土联锁排应用于海底管线冲刷防护试验研究[J]. 海洋工程, 2015, 33(2):77-83.
[9] JTS 145—2—2013 Code of hydrology for sea harbor[S]. Beijing: China Communications Press, 2013.
JTS 145—2—2013海港水文规范[S]. 北京:人民交通出版社, 2013.
[10] TIAN Peng, MA Xing-hua, ZHOU Hai, et al. Ballast instability mechanism and calculation method for soft mattress of concrete interlocking blocks under wave and current[J]. China Harbour Engineering, 2014,200(10):31-35.
田鹏, 马兴华, 周海,等. 波流作用下混凝土联锁块软体排压载失稳机理和计算方法[J]. 中国港湾建设, 2014,200(10):31-35.
[11] WANG Fei-xin, MA Xing-hua, ZHANG Chen, et al. Physical and numerical model study on anti-rolling stability of concrete interlocking blocks by current[J]. Port & Waterway Engineering, 2015,505(7):8-13.
王费新, 马兴华, 张忱,等. 混凝土联锁块软体排压载块抗水流掀动稳定性研究[J]. 水运工程, 2015,505(7):8-13.
[12] GU Bao-jian, MENG Xiang-guo, ZHANG Xiang-yue. Structural optimization of soft mattress of concrete interlocking blocks in deepwater area without shelting[J]. Port & Waterway Engineering, 2012,463(2):30-34.
顾保健, 孟相国, 张香月. 深水无掩护海区联锁块软体排结构优化分析[J]. 水运工程, 2012,463(2):30-34.
[13] ZHOU Hai, MA Xing-hua, TIAN Peng, et al. Ballast instability mechanism and calculation method for soft mattress of concrete interlocking blocks under current[J].China Harbour Engineering, 2014(9):11-16.
周海, 马兴华, 田鹏,等. 水流作用下混凝土联锁块软体排压载失稳机理和计算方法[J]. 中国港湾建设, 2014(9):11-16.
[14] WU Su-shu, ZHANG Wei, YUAN He-ping. Research on the stability for different parts of concrete mattress under flow action[J]. Port & Waterway Engineering, 2008(11):53-57.
吴苏舒, 张玮, 袁和平. 不同部位护底混凝土联锁排稳定特性研究[J]. 水运工程, 2008(11):53-57.
[15] JTS 154—1—2011 Code of design and construction of breakwaters[S].Beijing: China Communications Press, 2011.
JTS 154—1—2011防波堤设计与施工规范[S]. 北京:人民交通出版社, 2011.
基金
国家电网公司500 kV海缆工程项目资助(52110417000N);国家电网公司科技项目资助(5211DS17002F);国家海洋局第二海洋研究所科研业务费专项项目资助(JG1307)