基于梯度依赖客观分析技术的全球Argo网格化数据集:构建及初步应用

谢春虎, 徐苗苗, 曹莎莎, 张勇, 张春玲

海洋学研究 ›› 2019, Vol. 37 ›› Issue (4) : 24-35.

PDF(8347 KB)
PDF(8347 KB)
海洋学研究 ›› 2019, Vol. 37 ›› Issue (4) : 24-35. DOI: 10.3969/j.issn.1001-909X.2019.04.003
研究论文

基于梯度依赖客观分析技术的全球Argo网格化数据集:构建及初步应用

  • 谢春虎, 徐苗苗, 曹莎莎, 张勇, 张春玲
作者信息 +

Gridded Argo data set based on GDCSM analysis technique: establishment and preliminary applications

  • XIE Chun-hu, XU Miao-miao, CAO Sha-sha, ZHANG Yong, ZHANG Chun-ling*
Author information +
文章历史 +

摘要

采用梯度依赖相关尺度方法构建了1套2004—2017年间,月平均的全球海洋(0~1 500 m)1°×1°的Argo数据集,并在对该数据集进行对比检验的基础上,将其初步应用于中西太平洋黄鳍金枪鱼的渔场分析研究。结果表明,所构建的Argo数据集与WOA13数据集的温、盐偏差在上表层(150 m)稍大,最大值分别约为0.5 ℃和0.1,且偏差均随深度的增加而逐渐减小;其与TAO浮标时间序列的温度偏差,2004—2017年间均小于1 ℃,最大盐度偏差则小于0.5,且大部分海域接近0。中西太平洋海域,黄鳍金枪鱼中心渔场多集中在 28~29 ℃ 等温线范围内,在 22 ℃以下的海域单位捕捞努力量渔获量(catch per unit effort,CPUE)值极小;中心渔场区温跃层上界深度范围在20~120 m之间,且中心渔场在各个深度上形成的频数大体呈正态分布,温跃层上界深度为90 m时,形成中心渔场的可能性达到最大。研究表明所构建的数据集在水文环境分析及资源评估中有一定的应用价值。

Abstract

A set of monthly mean global ocean(0~1 500 m)Argo data sets (1°× 1°) from 2004 to 2017 was constructed by using “Gradient-dependent Correlation Scale Method”. And based on the comparative test of the data set, we have initially applied the data set to the fisheries analysis of yellowfin tuna in the Central and Western Pacific Ocean. The results show that the temperature and salinity deviations between the Argo data set and the WOA13 historical data set were slightly larger in the upper surface layer of the ocean about 0.5 ℃ and 0.1 respectively, and the two deviations both decreases gradually with the increase of depth. The temperature deviations between the Argo data set and time series of the TAO buoy were less than 1 °C in 2004-2017, and the maximum salinity deviations were less than 0.5 while most of those in the sea areas were close to 0. In the Central and Western Pacific Ocean, the central fishing ground of yellowfin tuna mostly concentrated at the isotherm of the range of 28 ~ 29 ℃, and in the sea areas where temperature below 22 ℃, the catch per unit effort (CPUE) value was very small. In the central fishery area, the upper boundary depth of the thermocline was in the range of 20 m and 120 m, and the frequency of formation of the center fishing ground at each depth was generally normal distribution. When the upper boundary depth of the thermocline was 90 m, the possibility of forming the center fishing ground was the greatest. While further verifying the reliability of the data set, it is also shown that the data set constructed in our study has certain application value in hydrologic environment analysis and resource assessment.

关键词

梯度依赖 / 最优插值 / Argo / 渔场分析

Key words

gradient-dependent / OI / Argo / analysis of fishing ground

引用本文

导出引用
谢春虎, 徐苗苗, 曹莎莎, 张勇, 张春玲. 基于梯度依赖客观分析技术的全球Argo网格化数据集:构建及初步应用[J]. 海洋学研究. 2019, 37(4): 24-35 https://doi.org/10.3969/j.issn.1001-909X.2019.04.003
XIE Chun-hu, XU Miao-miao, CAO Sha-sha, ZHANG Yong, ZHANG Chun-ling. Gridded Argo data set based on GDCSM analysis technique: establishment and preliminary applications[J]. Journal of Marine Sciences. 2019, 37(4): 24-35 https://doi.org/10.3969/j.issn.1001-909X.2019.04.003
中图分类号: P715.2   

参考文献

[1] LEVITUS S. Climatological atlas of the world ocean[R]//NOAA professional paper. Washington, D. C: US Government Printing Office, 1982, 13:173.
[2] BOYER T P, STEPHENS C, ANTONOV J I, et al. World ocean atlas 2001, vol. 2: Salinity [R]//LEVITUS S. NOAA Atlas NESDIS 50. Washington, D. C: US Government Printing Office, 2002: 165.
[3] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al. World ocean atlas 2005, vol. 1: Temperature[R]//LEVITUS S. NOAA Atlas NESDIS 61. Washington D. C: US Government Printing Office, 2006: 182.
[4] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al. World ocean atlas 2009, vol. 1: Temperature[R]//LEVITUS S. NOAA Atlas NESDIS 68. Washington D. C: US Government Printing Office, 2010: 184.
[5] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al. World ocean atlas 2013, vol. 1: Temperature[R]//LEVITUS S. NOAA Atlas NESDIS 73. Washington D C: U S Government Printing Office, 2013:40.
[6] ROEMMICH D, GILSON J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program[J]. Progress in Oceanography, 2009, 82(2): 81-100.
[7] KOLODZIEJCZYK N, ANNAIG P M, GAILLARD F. ISAS-15 temperature and salinity gridded fields[DB/OL]. Seanoe, 2017. http://doi.org/10.17882/52367.
[8] WANG Bin. International Pacific Research Center April 2016-March 2017[R]. School of Ocean and Earth Science and Technology University of Hawaii at Mānoa, 2017: 1-14.
[9] HOSODA S T, NAKAMURA T O. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations[R]. Jamstec Report of Research & Development, 2008, 8:47-59.
[10] WANG Hui-zan, WANG Gui-hua, ZHANG Ren, et al. User’s manual of Argo gridded salinity product (G-Argo)[Z/OL]. Hangzhou: State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 2010. http://www.argo.org.cn/argo_success/demostration/demostration1.html.
王辉赞, 王桂华, 张韧, 等. Argo网格化盐度产品(G-Argo)用户手册[Z/OL].杭州:卫星海洋环境动力学国家重点实验室,国家海洋局第二海洋研究所, 2010. http://www.argo.org.cn/argo_success/demostration/demostration1.html.
[11] YAN Chang-xian, ZHU Jian, XIE Ji-pin. An ocean reanalysis system for the joining area of Asia and Indian-Pacific ocean[J]. Atmopheric and Oceanic Sciene Letters, 2010, 3(2):81-86.
[12] HAN Gui-jun, WU Xin-rong, LI Wei. Argo grid product user manual[Z]. Tianjin: National Ocean Information Center, 2011.
韩桂军, 吴欣荣, 李威. Argo网格化产品用户手册[Z]. 天津: 国家海洋信息中心, 2011.
[13] LI Hong, XU Jian-ping, LIU Zeng-hong, et al. Study on the global ocean Argo gridded dataset and its validation community in coastal waters of Yantai[J]. Marine Science Bulletin, 2013, 32(6): 615-625.
李宏, 许建平, 刘增宏, 等. 全球海洋Argo网格资料集及其验证[J]. 海洋通报, 2013, 32(6): 615-625.
[14] LU Shao-lei, LI Hong, LIU Zeng-hong, et al. Global ocean Argo grid dataset (BOA_Argo) user manual[Z]. Hangzhou: China Argo Real-Time Data Center, 2018.
卢少磊, 李宏, 刘增宏, 等. 全球海洋Argo网格资料集(BOA_Argo)用户手册[Z]. 杭州: 中国Argo实时资料中心, 2018.
[15] KALNAY E. Atmospheric modeling, data assimilation and predictability[M]. Cambridge: Cambridge University Press, 2003.
[16] CRESSMAN G P. An operational objective analysis system[J]. Monthly Weather Review, 1960, 87(10):367-374.
[17] ZHANG Chun-ling, WANG Zhen-feng, LI Hong. Argo data grid experiment based on optimal interpolation[J]. Hydrographic Surveying and Charting, 2012, 3(32): 29-31.
张春玲, 王振峰, 李宏. 基于最优插值法的Argo数据网格化试验[J]. 海洋测绘, 2012, 3(32): 29-31.
[18] AKIMA H. A new method for interpolation and smooth curve fitting based on local procedures[J]. Journal of the Association for Computing Machinery, 1970, 17(4): 589-602.
[19] ZHANG Chun-ling, XU Jian-ping, BAO Xian-wen, et al. An effective method for improving the accuracy of Argo objective analysis[J]. Acta Oceanlolgical Sinica, 2013, 32(7): 66-77.
[20] ZHANG Chun-ling, XU Jian-ping, BAO Xian-Wen, et al. Gradient-dependent correlation scale method based on Argo[J]. Journal of PLA University of Science and Technology, 2015, 16(5): 476-48.
张春玲, 许建平, 鲍献文, 等. 基于Argo资料的梯度依赖相关尺度方法[J]. 解放军理工大学学报, 2015, 16(5): 476-48.
[21] BEHRIONER D W, MING J, ANTS L. An improved coupled method for ENSO prediction and implications for ocean initialization: Part I: The Ocean Data Assimilation System[J]. Monthly Weather Review, 1998, 126: 1 013-1 021.
[22] CHU P C, FAN C, LIU W T. Determination of vertical thermal structure from sea surface temperature[J]. Journal of Atmospheric & Oceanic Technology, 2000, 17(7): 971-979.
[23] CHU P C, FAN C W. Maximum angle method for determining mixed layer depth from seaglider data[J]. Journal of Oceanography, 2011, 67(2): 219-230.
[24] ZHANG Chun-ling, XU Jian-ping, BAO Xian-Wen, et al. Estimation of Argo sea subsurface temperature based on a thermal parametric model[J]. Marine Science Bulletin, 2014, 33(1): 16-26.
张春玲, 许建平, 鲍献文, 等. 基于海温参数模型推算Argo表层温度[J]. 海洋通报, 2014, 33(1): 16-26.
[25] YANG Sheng-long, MA Jun-jie, WU Yu-mei, et al. Relationship between temporal-spatial distribution of fishing grounds of bigeye tuna(Thunnus obesus)and thermocline characteristics in the Atlantic Ocean[J]. Acta Ecologica Sinica, 2015, 35(3): 1-9.
[26] LIU Yong, CHEN Xin-jun. Spatio-temporal distribution of Thunnus albacares and its relationship with sea surface temperature in the tuna purse seine fishery of the Central and Western Pacific[J]. Marine Fisheries, 2007, 29(4): 296-301.
刘勇, 陈新军. 中西太平洋金枪鱼围网黄鳍金枪鱼产量的时空分布及与表温的关系[J]. 海洋渔业, 2007, 29(4): 296-301.
[27] YANG Sheng-long, ZHANG Bian-bian, JIN Shao-fei, et al. Relationship between the temporal-spatial distribution of longline fishing grounds of yellowfin tuna (Thunnus albacares)and the thermocline characteristics in the Western and Central Pacific Ocean[J].Haiyang Xuebao, 2015, 37(6): 78-87.
杨胜龙, 张忭忭, 靳少非, 等. 中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系[J]. 海洋学报, 2015, 37(6): 78-87.

基金

农业部远洋与极地渔业创新重点实验室开放基金项目资助(A1-0203-00-2017-1)

PDF(8347 KB)

Accesses

Citation

Detail

段落导航
相关文章

/