声学多普勒流速剖面仪(ADCP)是对海洋内波监测的有效手段,但受到仪器本身和复杂的海洋环境噪声等影响,走航式ADCP记录的海流数据存在大量噪声,且混有流速异常值。为了进一步提高海洋内孤立波的提取精度与准确性,本文针对走航式ADCP海流数据特点引入IGG3方法的权函数因子,设计了一种抗差Vondrak滤波器,并与快速傅里叶变换、小波分析和滑动平均3种传统滤波方法进行对比,以验证抗差Vondrak滤波方法的有效性与优越性。研究结果表明,抗差Vondrak滤波方法不仅可以有效地滤除流速噪声,还可以自适应剔除海流观测数据中的异常值,由其提取出的内孤立波准确且各层水平流速清晰。因此,与传统滤波方法相比,抗差Vondrak滤波方法在内孤立波提取方面具有一定的优越性。
Abstract
Acoustic Doppler Current Profiler (ADCP) is an effective way to monitor ocean internal waves. However, due to the influence of the instrument itself and complex ocean environment noise, there are a lot of noise and some abnormal velocity values in the velocity data recorded by ADCP. In order to further improve the extraction accuracy of internal solitary waves in the sea, the weight function factor of IGG3 method was introduced according to the characteristics of the shipboard ADCP velocity data, and the Robust Vondrak filter was designed. In order to verify the effectiveness and superiority of Robust Vondrak filtering method, it was compared with three traditional filtering methods: fast Fourier transform, wavelet transform and sliding average. The experimental results show that the Robust Vondrak filtering method can not only remove the flow velocity noise, but also effectively eliminate abnormal flow velocity values, so it has certain advantages compared with the traditional filtering methods. The Robust Vondrak filtering method can extract internal solitary waves accurately and the horizontal velocity of each layer is clear. It is a good method to extract internal solitary wave.
关键词
抗差Vondrak滤波 /
内孤立波 /
IGG3 /
ADCP
Key words
Robust Vondrak filter /
internal solitary wave /
IGG3 /
ADCP
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 辜俊波. 海洋内波与海浪的数值模拟[D].上海:上海交通大学,2012.
GU Junbo. Numerical simulation of ocean internal waves and surface waves[D]. Shanghai: Shanghai Jiaotong University, 2012.
[2] 张洪生,辜俊波,贾海青,等.连续分层海洋中内波传播的一种数值模式[J].力学学报,2012,44(5):896-903.
ZHANG Hongsheng, GU Junbo, JIA Haiqing, et al. A numerical model for internl wave propagation in continuously stratified ocean[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 896-903.
[3] 方文东,施平,龙小敏,等.南海北部孤立内波的现场观测[J].科学通报,2005,50(13):1400-1404.
FANG Wendong, SHI Ping, LONG Xiaomin, et al. Field observation of isolated internal waves in the Northern South China Sea[J]. Chinese Science Bulletin, 2005, 50(13): 1400-1404.
[4] 黄晓冬. 南海内孤立波的空间分布与时间变化特征研究[D].青岛:中国海洋大学,2013.
HUANG Xiaodong. Study on the spatial distributions and temporal variabilities of internal solitary waves in the South China Sea[D]. Qingdao: Ocean University of China, 2013.
[5] GUO Chuncheng, CHEN Xue'en. A review of internal solitary wave dynamics in the northern South China Sea[J]. Progress in Oceanography, 2014,121(2): 7-23.
[6] 孙文俊,沈斌坚.海洋内波ADCP监测技术研究[J].热带海洋学报,2010,29(4):170-173.
SUN Wenjun, SHEN Binjian. Detecting ocean internal wave using ADCP [J]. Journal of Tropical Oceanography, 2010, 29(4): 170-173.
[7] HUANG Xiaodong, CHEN Zhaohui, ZHAO Wei, et al. An extreme internal solitary wave event observed in the northern South China Sea[J]. Scientific Reports, 2016, 6(1): 1-10.
[8] XIE Xiaohui, LI Ming, BOICOURT W C. Breaking of internal solitary waves generated by an estuarine gravity current[J]. Geophysical Research Letters, 2017, 44(14): 7366-7373.
[9] 董兆乾,蒋松年,贺志刚.南大洋船载走航式ADCP资料的技术处理和技术措施以及多学科应用[J].极地研究,2010,22(3):211-230.
DONG Zhaoqian, JIANG Songnian, HE Zhigang. ADCP data technical processing of the chinares and its multidisciplinary application[J]. Chinese Journal of Polar Research, 2010, 22(3): 211-230.
[10] 陈志高,王胜平,冷春,等.ADCP流速数据综合滤波算法研究[J].人民长江,2016,47(13):42-47.
CHEN Zhigao, WANG Shengping, LENG Chun, et al. Experimental research on identification of hydraulic turbine regulating system model[J]. Yangtze River, 2016, 47(13): 42-47.
[11] 陈志高,王祎頔,王真祥,等. ADCP数据综合处理方法及软件系统研制[J].人民长江,2017,48(7):41-45.
CHEN Zhigao, WANG Yidi, WANG Zhenxiang, et al. Data processing method and software system research based on acoustic doppler current profiler[J]. Yangtze River, 2017, 48(7): 41-45.
[12] VONDRÁK J. A contribution to the problem of smoothing observational data[J]. Bulletin of the Astronomical Institutes of Czechoslovakia, 1969, 20(6): 349.
[13] 吴芸芸. Vondrak滤波准则及应用研究[D]. 长沙:中南大学,2012.
WU Yunyun. The criterion and application of Vondrak filter[D]. Changsha: Central South University, 2012.
[14] 张亮,高井祥,李增科,等.基于Vondrak粗差探测的抗差EKF算法在GPS导航中的应用[J].大地测量与地球动力学,2014,34(6):97-101.
ZHANG Liang, GAO Jingxiang, LI Zengke, et al. The application of robust EKF algorithm based on Vondrak gross error detection to GPS navigation[J]. Journal of Geodesy and Geodynamics, 2014, 34(6): 97-101.
[15] 吉绪发,卢辰龙.GPS多路径误差滤波方法比较研究[J].测绘通报,2015(4):10-13.
JI Xufa, LU Chenlong. Comparing different filtering methods for mitigation of GPS multipath error[J]. Bulletin of Surveying and Mapping, 2015(4): 10-13.
[16] XU Xiyu, XU Ke, SHEN Hua, et al. Sea surface height and significant wave height calibration methodology by a GNSS buoy campaign for HY-2A altimeter[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(11): 5252-5261.
[17] ZHENG Dawei, ZHONG Pengmin, DING Xiaoli, et al. Filtering GPS time-series using a Vondrak filter and cross-validation[J]. Journal of Geodesy, 2005, 79(6/7): 363-369.
[18] 周晓卫,戴吾蛟,朱建军,等.基于Helmert方差分量估计的Vondrak滤波方法[J]. 工程勘察, 2007(6): 42-45.
ZHOU Xiaowei, DAI Wujiao, ZHU Jianjun, et al. Vondrak filter based on helmert type variance component estimate[J]. Geotechnical Investigation & Surveying, 2007(6): 42-45.
[19] 杨元喜.等价权原理──参数平差模型的抗差最小二乘解[J].测绘通报,1994,49(6):33-35.
YANG Yuanxi. Principle of equivalent weight-resistant least squares solution of parametric adjustment model[J]. Bulletin of Surveying and Mapping, 1994, 49(6): 33-35.
[20] BRIGHAM E O, MORROW R E. The fast Fourier transform[J]. IEEE Spectrum, 1967, 4(12): 63-70.
[21] FARGE M. Wavelet transform and their application to turbulence[J].Annu Rev Fluid Mech, 1992, 56(4): 68-68.
[22] 刘鲭洁,陈桂明,刘晓方,等.FFT和小波变换在信号降噪中的应用[J].数据采集与处理,2009,24(S1):58-60.
LIU Qingjie, CHEN Guiming, LIU Xiaofang, et al. Application of FFT and wavelet in signal denoising[J]. Journal of Data Acquisition and Processing, 2009, 24(S1): 58-60.
基金
国家自然科学基金项目资助(11801402)