夏季长江口不同粒级浮游植物碱性磷酸酶活性

王奕恒, 郝锵, 陈建芳, 朱元励, 金海燕, 周锋, 张伟

海洋学研究 ›› 2022, Vol. 40 ›› Issue (4) : 25-37.

PDF(3517 KB)
PDF(3517 KB)
海洋学研究 ›› 2022, Vol. 40 ›› Issue (4) : 25-37. DOI: 10.3969j.issn.1001-909X.2022.04.003
研究论文

夏季长江口不同粒级浮游植物碱性磷酸酶活性

  • 王奕恒1,2,3, 郝锵*2,3,4, 陈建芳1,2,3,4, 朱元励2,3, 金海燕1,2,3,4, 周锋1,3,4, 张伟2,3,5
作者信息 +

Alkaline phosphatase activity of size-fractionated phytoplankton in the Changjiang Estuary in summer

  • WANG Yiheng1,2,3, HAO Qiang*2,3,4, CHEN Jianfang1,2,3,4, ZHU Yuanli2,3, JIN Haiyan1,2,3,4, ZHOU Feng1,3,4, ZHANG Wei2,3,5
Author information +
文章历史 +

摘要

碱性磷酸酶活性(alkaline phosphatase activity, APA)是海洋研究中用于反映浮游植物磷限制状态的重要指标。在长江口等“氮过剩”海域,磷是控制海域初级生产力水平的主要因子,然而,磷限制的范围常常难以界定,当前对不同粒级浮游植物的磷限制效应所知甚少。该文根据2020年夏季长江口航次资料,给出了海洋表层各粒级浮游植物(Net:≥20 μm;Nano:2~20 μm;Pico:0.8~2 μm)APA、浮游细菌APA(0.2~0.8 μm)和溶解态APA(<0.2 μm)的空间分布特征,并分析了APA与环境要素间的相关性。结果显示,各粒级浮游植物APA均与无机磷酸盐浓度(dissolved inorganic phosphate, DIP)呈显著负相关,这表明DIP浓度是影响浮游植物APA分布的主要因素。在平面分布上,各粒级浮游植物APA在近口门的光限制区均较低,且呈现自口门向外逐渐升高的趋势,与DIP的分布特征相反。Net和Nano级APA[平均值分别为 (40.28±32.35) nmol/(L·h)和(52.38±34.78) nmol/(L·h)]显著高于Pico级APA[平均值为(28.43±20.23) nmol/(L·h)],这表明大粒级浮游植物可能更易受DIP下降的影响。该研究中,诱导浮游植物APA快速升高的DIP浓度为0.159 μmol/L,与近岸区磷限制经验阈值相接近。该研究揭示了夏季不同粒级浮游植物对长江口磷分布的响应特征,有助于理解长江口初级生产过程的环境调控机制。

Abstract

Alkaline phosphatase activity (APA) is an important indicator of phytoplankton phosphorus limitation status in the marine science study. In the “nitrogen-excess” areas such as the Changjiang Estuary (CJE), phosphorus is a major factor controlling the primary productivity in the sea. However, the extent of phosphorus limitation is often difficult to define and little is known about the effect of phosphorus limitation on phytoplankton at different sizes. In this study, the spatial distribution of phytoplankton (Net: ≥20 μm; Nano: 2~20 μm; Pico: 0.8~2 μm) APA, bacterioplankton APA (0.2~0.8 μm) and dissolved APA (<0.2 μm) in the surface layer of the CJE in the summer of 2020 were given, and the correlation between APA and environmental factors were analyzed. The results showed that size-fractionated phytoplankton APA was negatively correlated with dissolved inorganic phosphate (DIP), indicating that DIP concentration was the main factor affecting the distribution of size-fractionated phytoplankton APA. In the spatial distribution, phytoplankton APA was lower in the light-limitation zone near the mouth, and showed an increasing trend from the mouth to the east, contrary to the distribution of DIP. Net and Nano phytoplankton APA (mean values of (40.28±32.35) nmol/(L·h) and (52.38±34.78) nmol/(L·h), respectively) were significantly higher than Pico phytoplankton APA (mean values of (28.43±20.23) nmol/(L·h)) in the CJE, implying that large size phytoplankton were more susceptible to DIP decline. In this study, the DIP concentration for inducing a rapid increase in phytoplankton APA was 0.159 μmol/L, which was close to the empirical threshold for nearshore phosphorus limitation. This study revealed the characteristics of phytoplankton response to phosphorus distribution in the CJE at different grain levels in summer, and also contributed to the understanding of the environmental regulatory mechanisms of primary production processes in the CJE.

关键词

长江口 / 磷限制 / 不同粒级浮游植物 / 碱性磷酸酶活性

Key words

Changjiang Estuary / phosphorus limitation / size-fractionated phytoplankton / alkaline phosphatase activity

引用本文

导出引用
王奕恒, 郝锵, 陈建芳, 朱元励, 金海燕, 周锋, 张伟. 夏季长江口不同粒级浮游植物碱性磷酸酶活性[J]. 海洋学研究. 2022, 40(4): 25-37 https://doi.org/10.3969j.issn.1001-909X.2022.04.003
WANG Yiheng, HAO Qiang, CHEN Jianfang, ZHU Yuanli, JIN Haiyan, ZHOU Feng, ZHANG Wei. Alkaline phosphatase activity of size-fractionated phytoplankton in the Changjiang Estuary in summer[J]. Journal of Marine Sciences. 2022, 40(4): 25-37 https://doi.org/10.3969j.issn.1001-909X.2022.04.003
中图分类号: P734   

参考文献

[1] REDFIELD A C, KETCHUM B H, RICHARDS F A. The influence of organisms on the composition of sea-water[J]. The Sea, 1963, 2: 26-77.
[2] DUHAMEL S, DIAZ J M, ADAMS J C, et al. Phosphorus as an integral component of global marine biogeochemistry[J]. Nature Geoscience, 2021, 14(6): 359-368.
[3] CORRELL D L. The role of phosphorus in the eutrophication of receiving waters: A review[J]. Journal of Environmental Quality, 1998, 27(2): 261-266.
[4] HOPPE H G. Phosphatase activity in the sea[J]. Hydrobiologia, 2003, 493(1): 187-200.
[5] AMMERMAN J W. Role of ecto-phosphohydrolases in phosphorus regeneration in estuarine and coastal ecosystems[M]//Microbial enzymes in aquatic environments. New York: Springer, 1991: 165-186.
[6] NAUSCH M. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea)[J]. Aquatic Microbial Ecology, 1998, 16(1): 87-94.
[7] LØVDAL T, TANAKA T, THINGSTAD T F. Algal-bacterial competition for phosphorus from dissolved DNA, ATP, and orthophosphate in a mesocosm experiment[J]. Limnology and Oceanography, 2007, 52(4): 1407-1419.
[8] KANG Wei, WANG Zhaohui, LIU Lei, et al. Alkaline phosphatase activity in the phosphorus-limited southern Chinese coastal waters[J]. Journal of Environmental Sciences, 2019, 86: 38-49.
[9] ZHANG Xia, ZHANG Jingping, YUAN Huamao, et al. Seasonal dynamics of phytoplankton phosphorus stress in temperate Jiaozhou Bay, North China[J]. Continental Shelf Research, 2021, 231: 104602.
[10] HUANG Bangqin, OU Linjian, WANG Xiulin, et al. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences[J]. Aquatic Microbial Ecology, 2007, 49(2): 195-206.
[11] TSENG Y F, LIN J, DAI M, et al. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River[J]. Biogeosciences, 2014, 11(2): 409-423.
[12] LABRY C, DELMAS D, HERBLAND A. Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters (Bay of Biscay)[J]. Journal of Experimental Marine Biology and Ecology, 2005, 318(2): 213-225.
[13] IVANČIĆ I, PFANNKUCHEN M, GODRIJAN J, et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions[J]. Progress in Oceanography, 2016, 146: 175-186.
[14] 黄邦钦,洪华生,薛雄志.厦门西海域水体中碱性磷酸酶活力分布及其影响因子分析[J].海洋学报,2000,22(1):62-68.
HUANG Bangqin, HONG Huasheng, XUE Xiongzhi. Distribution and controlling factors of alkaline phosphatase activity in western Xiamen waters[J]. Acta Oceanologica Sinica, 2000, 22(1): 62-68.
[15] 宁修仁,史君贤,蔡昱明,等.长江口和杭州湾海域生物生产力锋面及其生态学效应[J].海洋学报,2004,26(6):96-106.
NING Xiuren, SHI Junxian, CAI Yuming, et al. Biological productivity front in the Changjiang Estuary and the Hangzhou Bay and its ecological effects[J]. Acta Oceanologica Sinica, 2004, 26(6): 96-106.
[16] 周锋,钱周奕,刘安琪,等.长江口及邻近海域底层水体低氧物理机制的研究进展[J].海洋学研究,2021,39(4):22-38.
ZHOU Feng, QIAN Zhouyi, LIU Anqi, et al. Recent progress on the studies of the physical mechanisms of hypoxia off the Changjiang (Yangtze River) Estuary[J]. Journal of Marine Sciences, 2021, 39(4): 22-38.
[17] LIU Zhiqiang, GAN Jianping, WU Hui, et al. Advances on coastal and estuarine circulations around the Changjiang Estuary in the recent decades (2000-2020)[J]. Frontiers in Marine Science, 2021, 8: 615929.
[18] TANG Danling, DI Baoping, WEI Guifeng, et al. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea[J]. Hydrobio-logia, 2006, 568(1): 245-253.
[19] MO Yu, OU Linjian, LIN Lizhen, et al. Temporal and spatial variations of alkaline phosphatase activity related to phosphorus status of phytoplankton in the East China Sea[J]. Science of the Total Environment, 2020, 731: 139192.
[20] GRASSHOFF K, KREMLING K, EHRHARDT M. Methods of seawater analysis[M]. Weinheim: Wiley-VCH, 1999: 193-198.
[21] LI H, VELDHUIS M J W, POST A F. Alkaline phosphatase activities among planktonic communities in the northern Red Sea[J]. Marine Ecology Progress Series, 1998, 173: 107-115.
[22] NICKLISCH A, SHATWELL T, KÖHLER J. Analysis and modelling of the interactive effects of temperature and light on phytoplankton growth and relevance for the spring bloom[J]. Journal of Plankton Research, 2008, 30(1): 75-91.
[23] HAO Qiang, CHAI Fei, XIU Peng, et al. Spatial and temporal variation in chlorophylla concentration in the Eastern China Seas based on a locally modified satellite dataset[J]. Estuarine, Coastal and Shelf Science, 2019, 220: 220-231.
[24] WALMSLEY R D, BUTTY M, VAN DER PIEPEN H, et al. Light penetration and the interrelationships between optical parameters in a turbid subtropical impoundment[J]. Hydrobiologia, 1980, 70(1): 145-157.
[25] HOPPE H G, ULLRICH S. Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone[J]. Aquatic Microbial Ecology, 1999, 19(2): 139-148.
[26] KOIKE I, NAGATA T. High potential activity of extracellular alkaline phosphatase in deep waters of the central Pacific[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(9/10): 2283-2294.
[27] ZHANG Xia, ZHANG Jingping, SHEN Yuan, et al. Dynamics of alkaline phosphatase activity in relation to phytoplankton and bacteria in a coastal embayment Daya Bay, South China[J]. Marine Pollution Bulletin, 2018, 131: 736-744.
[28] 覃仙玲,陈波,赖俊翔,等.钦州湾磷营养状态与浮游植物的碱性磷酸酶活性分析[J].海洋通报,2018,37(2):169-176.
QIN Xianling, CHEN Bo, LAI Junxiang, et al.Phosphorus nutrition state and alkaline phosphatase activity of phytoplankton in the Qinzhou Bay[J]. Marine Science Bulletin, 2018, 37(2): 169-176.
[29] 林俊琪.九龙江河口湾和长江冲淡水区浮游植物群落磷胁迫研究[D].厦门:厦门大学,2018.
LIN Junqi. Phytoplankton community phosphate stress in the Jiulong River Estuary and Changjiang River Plume[D]. Xiamen: Xiamen University, 2018.
[30] FALKOWSKI P G, OLIVER M J. Mix and match: How climate selects phytoplankton[J]. Nature Reviews Microbiology, 2007, 5(10): 813-819.
[31] KARPBOSS L, BOSS E, JUMARS P A. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion[J]. Oceanography and Marine Biology, 1996, 34: 71-107.
[32] JUSTIC' D, RABALAIS N N, TURNER R E, et al. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences[J]. Estuarine, Coastal and Shelf Science, 1995, 40(3): 339-356.
[33] LI Weiqi, GE Jianzhong, DING Pingxing, et al. Effects of dual fronts on the spatial pattern of chlorophyll-a concentrations in and off the Changjiang River Estuary[J].Estuaries and Coasts, 2021, 44(5): 1408-1418.
[34] 孙振皓,盛留洋,江新琴,等.2017年夏季长江口浮游植物暖水种增多现象分析[J].海洋学研究,2021,39(4):82-90.
SUN Zhenhao, SHENG Liuyang, JIANG Xinqin, et al. An analysis on the phenomenon of increasing warm-water species abundance of phytoplankton in the Changjiang (Yangtze River) Estuary during summer of 2017[J]. Journal of Marine Sciences, 2021, 39(4): 82-90.
[35] 江志兵,曾江宁,李宏亮,等.长江口及其邻近陆架区夏季网采浮游植物及其影响因素[J].海洋学报,2014,36(6):112-123.
JIANG Zhibing, ZENG Jiangning, LI Hongliang, et al. Distribution of net-phytoplankton community in summer and its influence factors in the Changjiang Estuary and adjacent continental shelf[J]. Acta Oceanologica Sinica, 2014, 36(6): 112-123.
[36] SARTHOU G, TIMMERMANS K R, BLAIN S, et al. Growth physiology and fate of diatoms in the ocean: A review[J]. Journal of Sea Research, 2005, 53(1/2): 25-42.
[37] WANG Yiheng, CHEN Jianfang, ZHOU Feng, et al. Spatial and temporal variations of chlorophyll a and primary productivity in the Hangzhou Bay[J]. Journal of Marine Science and Engineering, 2022, 10(3): 356.
[38] BEHRENFELD M J, O'MALLEY R T, BOSS E S, et al. Revaluatingocean warming impacts on global phytoplankton[J]. Nature Climate Change, 2016, 6(3): 323-330.
[39] FISHER T R, PEELE E R, AMMERMAN J W, et al. Nutrient limitation of phytoplankton in Chesapeake Bay[J]. Marine Ecology Progress Series, 1992, 82: 51-63.
[40] ARRUDA J A, MARZOLF G R, FAULK R T. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs[J].Ecology, 1983, 64(5): 1225-1235.
[41] HERZIG A. The zooplankton of the open lake[M]//Neusiedlersee: The limnology of a shallow lake in central Europe. Dordrecht: Springer Netherlands, 1979: 281-335.
[42] CEMBELLA A D, ANTIA N J, HARRISON P J. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part I[J]. Critical Reviews in Microbiology, 1982, 10(4): 317-391.
[43] SOHM J A, CAPONE D G.Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton[J]. Marine Ecology Progress Series, 2006, 317: 21-28.
[44] SISMA-VENTURA G, RAHAV E. DOP stimulates heterotrophic bacterial production in the oligotrophic southeastern Mediterranean coastal waters[J]. Frontiers in Microbiology, 2019, 10: 1913.
[45] RAVEN J A. The role of vacuoles[J]. New Phytologist, 1987, 106: 357-422.

基金

国家自然科学基金-浙江两化融合联合基金(U1709201);国家自然科学基金(41876026);浙江省万人计划项目(2020R52038);“全球变化与海气相互作用”专项二期任务(长江口缺氧酸化预警监测);中央级公益性科研院所基本科研业务费专项资金资助项目(SZ2001,JG1103)

PDF(3517 KB)

Accesses

Citation

Detail

段落导航
相关文章

/