多光谱遥感影像的光谱规则分类算法修正及海岛、海岸带应用

丁凌, 陈建裕, 朱乾坤, 陈宁华

海洋学研究 ›› 2022, Vol. 40 ›› Issue (4) : 38-51.

PDF(3789 KB)
PDF(3789 KB)
海洋学研究 ›› 2022, Vol. 40 ›› Issue (4) : 38-51. DOI: 10.3969j.issn.1001-909X.2022.04.004
研究论文

多光谱遥感影像的光谱规则分类算法修正及海岛、海岸带应用

  • 丁凌1,2, 陈建裕*1,2, 朱乾坤2, 陈宁华3
作者信息 +

Modification of Spectral Rule-based Classifier based on multispectral remote sensing images and its application in islands and coastal zones

  • DING Ling1,2, CHEN Jianyu*1,2, ZHU Qiankun2, CHEN Ninghua3
Author information +
文章历史 +

摘要

在光谱规则分类算法(Spectral Rule-based Classifier, SRC)基础上考虑大气校正对遥感影像光谱反射率的影响,提出了一种改进光谱规则的分类算法(Modified Spectral Rule-based Classifier, MSRC),从地物光谱响应曲线和光谱指数两个方面来修正光谱规则集,通过规则细化和补充、阈值改正优化光谱类别。以珠江三角洲海岛(佳蓬、淇澳)和海岸带(荃湾、惠东)的Landsat 8影像作为实验数据,对比了大气校正前后波段反射率和地物光谱响应曲线,分析了改进后MSRC算法的地物分类结果和精度,并与原SRC算法、最小距离分类(MDC)算法、最大似然分类(MLC)算法、支持向量机分类(SVM)算法、神经网络分类(NNC)算法以及基于光谱指数的算法等多种地物分类算法进行比较。结果表明,4组实验数据的MSRC算法分类结果总体精度分别为87.66%、82.38%、77.67%和80.05%,高于SRC、MDC、MLC和基于光谱指数的分类算法,在无需人工标注训练数据集的前提下接近SVM和NNC算法的分类精度。MSRC算法适用于海岛和海岸带的Landsat 8多光谱遥感影像。

Abstract

Based on the unsupervised pixel-based Spectral Rule-based Classifier (SRC) algorithm, an effective Modified Spectral Rule-based Classifier (MSRC) was proposed considering the influence of atmospheric correction on spectral reflectances of remote sensing images. MSRC modifies rule sets according to ground object spectrum curves and spectral indices, optimizes spectral categories through refined and supplementary rules as well as modified thresholds. The Landsat 8 remote sensing images of islands (Jiapeng, Qi'ao) and coastal zones (Quanwan, Huidong) in the Pearl River Delta were chosen as the experimental data. The band reflectances and ground object spectrum curves before and after atmospheric correction process were contrasted. Classification results and accuracy of the MSRC algorithm were analyzed and compared with those of other six classification algorithms: the original SRC algorithm, Minimum Distance Classification (MDC) algorithm, Maximum Likelihood Classification (MLC) algorithm, Support Vector Machine (SVM) algorithm, Neural Network Classification (NNC) algorithm and spectral indices-based classification methods. The overall accuracy (OA) of MSRC algorithm using experimental data were respectively 87.66%, 82.38%, 77.67% and 80.05%, which were all higher than those of the original SRC algorithm, MDC, MLC and spectral indices-based classification methods, and closed to the accuracy of supervised algorithms (SVM and NNC) without the requirement of manually labelling the training dataset. MSRC performs well in land-cover type scenarios of islands and coastal zones on Landsat 8 multispectral remote sensing images.

关键词

遥感影像 / 分类 / 光谱规则 / 大气校正

Key words

remote sensing images / classification / spectral rule / atmospheric correction

引用本文

导出引用
丁凌, 陈建裕, 朱乾坤, 陈宁华. 多光谱遥感影像的光谱规则分类算法修正及海岛、海岸带应用[J]. 海洋学研究. 2022, 40(4): 38-51 https://doi.org/10.3969j.issn.1001-909X.2022.04.004
DING Ling, CHEN Jianyu, ZHU Qiankun, CHEN Ninghua. Modification of Spectral Rule-based Classifier based on multispectral remote sensing images and its application in islands and coastal zones[J]. Journal of Marine Sciences. 2022, 40(4): 38-51 https://doi.org/10.3969j.issn.1001-909X.2022.04.004
中图分类号: TP75   

参考文献

[1] 李清泉,卢艺,胡水波,等.海岸带地理环境遥感监测综述[J].遥感学报,2016,20(5):1216-1229.
LI Qingquan, LU Yi, HU Shuibo, et al. Review of remotely sensed geo-environmental monitoring of coastal zones[J]. Journal of Remote Sensing, 2016, 20(5): 1216-1229.
[2] 林珲,张鸿生.热带与亚热带遥感:需求、挑战与机遇[J].遥感学报,2021,25(1):276-291.
LIN Hui, ZHANG Hongsheng. Tropical and subtropical remote sensing: Needs, challenges, and opportunities[J]. National Remote Sensing Bulletin, 2021, 25(1): 276-291.
[3] 宫鹏,张伟,俞乐,等.全球地表覆盖制图研究新范式[J].遥感学报,2016,20(5):1002-1016.
GONG Peng, ZHANG Wei, YU Le, et al. New research paradigm for global land cover mapping[J]. Journal of Remote Sensing, 2016, 20(5): 1002-1016.
[4] CHEN Jianyu, PAN Delu, MAO Zhihua, et al. Land-cover reconstruction and change analysis using multisource remotely sensed imageries in Zhoushan Islands since 1970[J]. Journal of Coastal Research, 2014, 30(2): 272-282.
[5] PHIRI D, MORGENROTH J. Developments in Landsat land cover classification methods: A review[J]. Remote Sensing, 2017, 9(9): 967.
[6] BLASCHKE T, HAY G J, KELLY M, et al. Geographic object-based image analysis-Towards a new paradigm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87: 180-191.
[7] BARALDI A, PUZZOLO V, BLONDA P, et al. Automatic spectral rule-based preliminary mapping of calibrated Landsat TM and ETM+ images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2563-2586.
[8] BARALDI A, DURIEUX L, SIMONETTI D, et al. Automatic spectral rule-based preliminary classification of radiometrically calibrated SPOT-4/-5/IRS, AVHRR/MSG, AATSR, IKONOS/QuickBird/OrbView/GeoEye, and DMC/SPOT-1/-2 imagery—Part I: system design and implemen-tation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1299-1325.
[9] BARALDI A, BOSCHETTI L, HUMBER M L. Probability sampling protocol for thematic and spatial quality assessment of classification maps generated from spaceborne/airborne very high resolution images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 701-760.
[10] BOSCHETTI L, ROY D P, JUSTICE C O, et al. MODIS-Landsat fusion for large area 30 m burned area mapping[J]. Remote Sensing of Environment, 2015, 161: 27-42.
[11] ARVOR D, BETBEDER J, DAHER F R G, et al. Towards user-adaptive remote sensing: Knowledge-driven automatic classification of Sentinel-2 time series[J]. Remote Sensing of Environment, 2021, 264: 112615.
[12] ANDRÉS S, ARVOR D, MOUGENOT I, et al. Ontology-based classification of remote sensing images using spectral rules[J]. Computers & Geosciences, 2017, 102: 158-166.
[13] TIEDE D, BARALDI A, SUDMANNS M, et al. Archi-tecture and prototypical implementation of a semantic querying system for big Earth observation image bases[J]. European Journal of Remote Sensing, 2017, 50(1): 452-463.
[14] LANG S, HAY G, BARALDI A, et al. GEOBIA achie-vements and spatial opportunities in the era of big earth observation data[J]. ISPRS International Journal of Geo-Information, 2019, 8(11): 474.
[15] 徐春燕,冯学智.TM图像大气校正及其对地物光谱响应特征的影响分析[J].南京大学学报:自然科学版,2007,43(3):309-317.
XU Chunyan, FENG Xuezhi. Atmospheric correction on TM image and its influence analysis on spectral response characteristics[J]. Journal of Nanjing University: Natural Sciences, 2007, 43(3): 309-317.
[16] MORAVEC D, KOMÁREK J, MEDINA S L C, et al. Effect of atmospheric corrections on NDVI: Intercompa-rability of Landsat 8, Sentinel-2, and UAV Sensors[J]. Remote Sensing, 2021, 13(18): 3550.
[17] 徐涵秋.从增强型水体指数分析遥感水体指数的创建[J].地球信息科学,2008,10(6):776-780.
XU Hanqiu. Comment on the enhanced water index(EWI): A discussion on the creation of a water index[J]. Geo-Information Science, 2008, 10(6): 776-780.
[18] 曹勇,陶于祥,邓陆,等.一种抑制裸地的不透水面指数构建[J].国土资源遥感,2020,32(3):71-79.
CAO Yong, TAO Yuxiang, DENG Lu, et al. An impervious surface index construction for restraining bare land[J]. Remote Sensing for Land & Resources, 2020, 32(3): 71-79.
[19] 侯西勇,邸向红,侯婉,等.中国海岸带土地利用遥感制图及精度评价[J].地球信息科学学报,2018,20(10):1478-1488.
HOU Xiyong, DI Xianghong, HOU Wan, et al. Accuracy evaluation of land use mapping using remote sensing techniques in coastal zone of China[J]. Journal of Geo-Information Science, 2018, 20(10): 1478-1488.
[20] TALUKDAR S, SINGHA P, MAHATO S, et al. Land-use land-cover classification by machine learning classifiers for satellite observations—a review[J]. Remote Sensing, 2020, 12(7): 1135.
[21] VERMOTE E F, TANRE D, DEUZE J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675-686.

基金

国家自然科学基金-浙江两化融合联合基金重点项目(U1609202);国家自然科学基金(41376184,40976109);国家重点研发计划(2016YFC1400903)

PDF(3789 KB)

Accesses

Citation

Detail

段落导航
相关文章

/