杭州湾南岸滨海盐沼碳库的季节性变化

陈一宁, 张子严, 陈鹭真, 张家林, 刘兵, 夏小明, 王欣凯, 蔡廷禄

海洋学研究 ›› 2023, Vol. 41 ›› Issue (1) : 55-67.

PDF(6011 KB)
PDF(6011 KB)
海洋学研究 ›› 2023, Vol. 41 ›› Issue (1) : 55-67. DOI: 10.3969-j.issn.1001-909X.2023.01.005
研究论文

杭州湾南岸滨海盐沼碳库的季节性变化

作者信息 +

Seasonal variation in coastal saltmarsh carbon stocks, south bank of Hangzhou Bay

Author information +
文章历史 +

摘要

滨海盐沼的碳库变化可为蓝碳碳汇核算提供依据。为量化短时间尺度(季节到年际尺度)内滨海盐沼碳库的固碳速率,基于高分辨率的地表高程监测系统,于2022年在杭州湾南岸典型滨海盐沼开展了季节性的观测和采样分析。研究结果表明,在观测期间,本地种海三棱藨草和外来种互花米草的生长呈现季节性变化特征,植物生长主要集中在3—9月。就植物碳库的地下部分而言,海三棱藨草固碳量达到11 g C·m-2,互花米草盐沼则较高,为56 g C·m-2。地表高程监测数据表明,海三棱藨草盐沼的沉积速率为12.30 cm·a-1,略低于互花米草盐沼的沉积速率(13.02 cm·a-1)。结合沉积速率与沉积物容重、有机碳含量等数据,可以算得观测期间,海三棱藨草盐沼沉积物碳埋藏速率为460 g C·m-2·a-1,互花米草盐沼沉积物碳埋藏速率为588 g C·m-2·a-1,这两种滨海湿地的碳埋藏速率也具有季节性,在夏、秋季达到高值。结合植物碳库和沉积物碳库结果可知,杭州湾南岸滨海盐沼生态系统具有较高的固碳速率,外来种生态系统固碳速率(644 g C·m-2·a-1)高于本地种生态系统固碳速率(471 g C·m-2·a-1)。在将来的滨海湿地蓝碳管理工作中,需要考虑不同物种之间的差异性。

Abstract

Carbon stock variation observation forms the basis for coastal saltmarsh blue carbon sink accounting. In order to accurately estimate the carbon sequestration rate of coastal saltmarshes over a short-term scale (seasonal to annual), this study carried out field observations and sample collections within a coastal saltmarsh on the south bank of Hangzhou Bay, covering different seasons of 2022. This study was primarily based on high-resolution surface monitoring by Surface Elevation Table (SET) systems. The results revealed a seasonal plant growth pattern between March and September for both the native species Scirpus mariqueter and the exotic species Spartina alterniflora. In terms of belowground biotic carbon stock changes, over the growing season, the carbon stock increase for Scirpus mariqueter reached 11 g C·m-2 whilst this value was 56 g C·m-2 for Spartina alterniflora. The SET data indicated a sedimentation rate of 13.02 cm·a-1 within the Spartina alterniflora saltmarsh, higher than that of the Scirpus mariqueter saltmarsh, 12.30 cm·a-1. Calculating the sedimentation rate data with sediment bulk density and organic carbon content, the sediment carbon accumulation rate of Scirpus mariqueter saltmarsh was estimated to be 460 g C·m-2·a-1, lower than 588 g C·m-2·a-1 of the Spartina alterniflora saltmarsh. Combining the biotic carbon stock increase and sediment carbon stock increase, the carbon sequestration rate for the Spartina alterniflora saltmarsh was found to be 644 g C·m-2·a-1, higher than the value of Scirpus mariqueter saltmarsh, 471 g C·m-2·a-1. Thus, the difference in carbon sequestration abilities of native and exotic species should be considered for future coastal blue carbon management.

关键词

滨海盐沼 / 植物 / 地表高程 / 碳埋藏 / 固碳速率

Key words

coastal saltmarsh / vegetation / surface elevation / carbon accumulation / carbon sequestration rate

引用本文

导出引用
陈一宁, 张子严, 陈鹭真, . 杭州湾南岸滨海盐沼碳库的季节性变化[J]. 海洋学研究. 2023, 41(1): 55-67 https://doi.org/10.3969-j.issn.1001-909X.2023.01.005
CHEN Yining, ZHANG Ziyan, CHEN Luzhen, et al. Seasonal variation in coastal saltmarsh carbon stocks, south bank of Hangzhou Bay[J]. Journal of Marine Sciences. 2023, 41(1): 55-67 https://doi.org/10.3969-j.issn.1001-909X.2023.01.005
中图分类号: Q948   

参考文献

[1]
WILLIAMS T P, BUBB J M, LESTER J N. Metal accumulation within salt marsh environments: A review[J]. Marine Pollution Bulletin, 1994, 28(5): 277-290.
[2]
BOORMAN L A. Saltmarsh review: An overview of coastal saltmarshes, their dynamic and sensitivity characteristics for conservation and management[R]//Joint Nature Conservation Committee Report, 2003, 334: 1-116.
[3]
SCHWARTZ M L. Encyclopedia of coastal science[M]. Dordrecht: Springer Netherlands, 2005: 965-975.
[4]
周晨昊, 毛覃愉, 徐晓, 等. 中国海岸带蓝碳生态系统碳汇潜力的初步分析[J]. 中国科学:生命科学, 2016, 46(4):475-486.
ZHOU C H, MAO Q Y, XU X, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone[J]. Scientia Sinica: Vitae, 2016, 46(4): 475-486.
[5]
刘钰, 李秀珍, 闫中正, 等. 长江口九段沙盐沼湿地芦苇和互花米草生物量及碳储量[J]. 应用生态学报, 2013, 24(8):2129-2134.
摘要
2010&mdash;2012年,采用野外采样和实验室测定相结合的方法,研究了长江口九段沙芦苇、互花米草植被带生物量的季节动态和碳储存能力.结果表明: 两种植物生物部分(地上、地下、枯立物生物量之和)的有机碳储量均为秋季最高、春季最低.地上活体互花米草单位面积的平均碳储量(445.81 g&middot;m<sup>-2</sup>)高于芦苇(285.52 g&middot;m<sup>-2</sup>),芦苇枯立物的平均碳储量(203.15 g&middot;m<sup>-2</sup>)低于互花米草(315.28 g&middot;m<sup>-2</sup>),但芦苇区土壤表层(0~30 cm)有机碳储量(1048.62 g&middot;m<sup>-2</sup>)约为互花米草区(583.33 g&middot;m<sup>-2</sup>)的2倍.芦苇区的碳储存能力(3212.96 g&middot;m<sup>-2</sup>)总体上高于互花米草区(2730.42 g&middot;m<sup>-2</sup>).表明保护芦苇群落对于维护盐沼湿地的碳汇功能具有重要意义.
LIU Y, LI X Z, YAN Z Z, et al. Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan Shoal Wetland of Yangtze Estuary, East China[J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2129-2134.
By the methods of field survey and laboratory analysis, an investigation was conducted on the seasonal dynamics of biomass and carbon storage of <em>Phragmites australis</em> and<em> Spartina alterniflora</em> dominated vegetation belts in the Jiuduan Shoal Wetland of Yangtze Estuary, East China in 2010-2012. The organic carbon storage of the biomass (including aboveground part, underground part, and standing litter) of the two plants was the highest in autumn and the lowest in spring. The average carbon storage of the biomass of <em>S. alterniflora</em> per unit area (445.81 g&middot;m<sup>-2</sup>) was much higher than that of <em>P. australis</em> (285.52 g&middot;m<sup>-2</sup>), and the average carbon storage of the standing litter of<em> S. alterniflora</em> (315.28 g&middot;m<sup>-2</sup>) was also higher than that of <em>P. australis</em> (203.15 g&middot;m<sup>-2</sup>). However, the organic carbon storage in the surface soil (0-30 cm) under <em>P. australis</em> community (1048.62 g&middot;m<sup>-2</sup>) was almost as twice times as that under <em>S. alterniflora</em> community (583.33 g&middot;m<sup>-2</sup>). Overall, the carbon accumulation ability of <em>P. australis</em> community (3212.96 g&middot;m<sup>-2</sup>) was stronger than that of the <em>S. alterniflora</em> community (2730.42 g&middot;m<sup>-2</sup>). Therefore, it is of significance to protect the <em>P. australis</em> community in terms of carbon sequestration at the salt marsh.
[6]
刘金娥, 苏海蓉, 徐杰, 等. 互花米草对中国海滨湿地土壤有机碳库的影响[J]. 生态环境学报, 2017, 26(6):1085-1092.
LIU J E, SU H R, XU J, et al. How does Spartina alterniflora affect the soil organic carbon pool of coastal wetlands in China[J]. Ecology and Environmental Sciences, 2017, 26(6): 1085-1092.
[7]
ZHANG G L, BAI J H, JIA J, et al. Soil organic carbon contents and stocks in coastal salt marshes with Spartina alterniflora following an invasion chronosequence in the Yellow River Delta, China[J]. Chinese Geographical Science, 2018, 28(3): 374-385.
[8]
WANG F M, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review, 2021, 8(9): nwaa296.
[9]
陈鹭真, 潘良浩, 邱广龙. 中国滨海蓝碳及其人为活动影响[J]. 广西科学院学报, 2021, 37(3):186-194.
CHEN L Z, PAN L H, QIU G L. Coastal blue carbon sink in China under the influence of human activity[J]. Journal of Guangxi Academy of Sciences, 2021, 37(3): 186-194.
[10]
MENG W Q, FEAGIN R A, HU B B, et al. The spatial distribution of blue carbon in the coastal wetlands of China[J]. Estuarine, Coastal and Shelf Science, 2019, 222: 13-20.
[11]
唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学:地球科学, 2018, 48:661-670.
TANG J W, YE S F, CHEN X C, et al. Coastal blue carbon: Concept, study method, and the application to ecological restoration[J]. Science China Earth Sciences, 2018, 48: 637-646.
[12]
曹磊, 宋金明, 李学刚, 等. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J]. 应用生态学报, 2013, 24(7):2040-2048.
摘要
滨海盐沼湿地有着较高的碳沉积速率和固碳能力,在缓解全球变暖方面发挥着重要作用,而盐渍土壤是滨海盐沼湿地碳收支研究中最大的有机碳库,研究其碳沉积与埋藏对于理解滨海湿地碳收支有着重要的意义.本文从滨海盐沼湿地土壤有机碳的来源、土壤有机碳库与沉积速率、盐沼湿地有机碳的埋藏机制、全球变化与滨海盐沼湿地碳封存等几方面对滨海盐沼湿地有机碳沉积与埋藏的相关研究进行综述.今后研究应侧重:1)加强对控制滨海盐沼湿地碳储存变异的基本因素的进一步研究;2)对测量滨海盐沼湿地沉积物碳储量和沉积碳埋藏速率的方法进行标准化;3)对潮汐影响下滨海盐沼湿地碳与邻近生态系统之间的横向交换通量进行量化;4)探明全球变暖的影响和生产力的提高是否可以抵消因呼吸增强而造成的有机碳降解速率的升高.确定固碳速率变化驱动因子,理解气候变化和人类活动对碳埋藏的影响机制,有助于提升我国滨海盐沼湿地的固碳能力.
CAO L, SONG J M, LI X G, et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 2040-2048.
Coastal salt marsh has higher potential of carbon sequestration, playing an important role in mitigating global warming, while coastal saline soil is the largest organic carbon pool in the coastal salt marsh carbon budget. To study the carbon deposition and burial in this soil is of significance for clearly understanding the carbon budget of coastal salt marsh. This paper summarized the research progress on the deposition and burial of organic carbon in coastal salt marsh from the aspects of the sources of coastal salt marsh soil organic carbon, soil organic carbon storage and deposition rate, burial mechanisms of soil organic carbon, and the relationships between the carbon sequestration in coastal salt marsh and the global climate change. Some suggestions for the future related researches were put forward: 1) to further study the underlying factors that control the variability of carbon storage in coastal salt marsh, 2) to standardize the methods for measuring the carbon storage and the deposition and burial rates of organic carbon in coastal salt marsh, 3) to quantify the lateral exchange of carbon flux between coastal salt marsh and adjacent ecosystems under the effects of tide, and 4) to approach whether the effects of global warming and the increased productivity could compensate for the increase of the organic carbon decomposition rate resulted from sediment respiration. To make clear the driving factors determining the variability of carbon sequestration rate and how the organic carbon storage is affected by climate change and anthropogenic activities would be helpful to improve the carbon sequestration capacity of coastal salt marshes in China.
[13]
HOWARDS J, HOYT S, ISENSEE K, et al. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses[M]. Washington D.C., U.S: Conservation International, 2014:182.
[14]
申霞, 王鹏, 王为攀, 等. 滨海盐沼净碳汇能力研究方法综述[J]. 生态学杂志, 2022, 41(4):792-803.
SHEN X, WANG P, WANG W P, et al. Review on the estimation methods of net carbon sinks of coastal salt marshes[J]. Chinese Journal of Ecology, 2022, 41(4): 792-803.
[15]
陈鹭真, 卢伟志, 林光辉. 滨海蓝碳:红树林、盐沼、海草床碳储量和碳排放因子评估方法[M]. 厦门: 厦门大学出版社, 2018:189.
CHEN L Z, LU W Z, LIN G H. Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows[M]. Xiamen: Xiamen University Press, 2018: 189.
[16]
陈鹭真. 地表高程监测在滨海蓝碳碳收支评估中的应用[J]. 海洋与湖沼, 2022, 53(2):261-268.
CHEN L Z. Application of surface elevation table for carbon budget assessments in coastal blue carbon ecosystems[J]. Oceanologia et Limnologia Sinica, 2022, 53(2): 261-268.
[17]
MA Z J, MELVILLE D S, LIU J G, et al. Rethinking China’s new great wall[J]. Science, 2014, 346(6212): 912-914.
Massive seawall construction in coastal wetlands threatens biodiversity
[18]
ZHANG Y H, HUANG G M, WANG W Q, et al. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China[J]. Ecology, 2012, 93(3): 588-597.
[19]
ZHANG Y H, MENG H Y, WANG Y, et al. Herbivory enhances the resistance of mangrove forest to cordgrass invasion[J]. Ecology, 2018, 99(6): 1382-1390.
The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions.© 2018 by the Ecological Society of America.
[20]
REN J L, CHEN J S, XU C L, et al. An invasive species erodes the performance of coastal wetland protected areas[J]. Science Advances, 2021, 7(42): eabi8943.
Large protected areas, once successful in rescuing iconic wetlands from human activities, are undermined by plant invasions.
[21]
李炎, BERGER G W, VAN WEERING T C E. 杭州湾南岸潮滩的210Pb分布及其沉积学意义[J]. 东海海洋, 1993, 11(1):34-43.
LI Y, BERGER G W, VAN WEERING T C E. 210Pb as a tracer for the tidal flat sedimentation in the southern Hangzhou Bay[J]. Donghai Marine Science, 1993, 11(1): 34-43.
[22]
李炎, 谢钦春. 杭州湾庵东浅滩地貌演变规律[J]. 东海海洋, 1993, 11(2):25-33.
LI Y, XIE Q C. Dynamical development of the Andong tidal flat in Hangzhou Bay, China[J]. Donghai Marine Science, 1993, 11(2): 25-33.
[23]
HUANG S L, CHEN Y N, LI Y. Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species[J]. Water Science and Engineering, 2020, 13(1): 34-44.
[24]
高抒, 杜永芬, 谢文静, 等. 苏沪浙闽海岸互花米草盐沼的环境-生态动力过程研究进展[J]. 中国科学:地球科学, 2014, 44:2339-2357.
GAO S, DU Y F, XIE W J, et al. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China: Earth Sciences, 2014, 57: 2567-2586.
[25]
夏添, 陈一宁, 高建华, 等. 植被演替对杭州湾南岸盐沼物质循环的影响[J]. 海洋科学, 2019, 43(10):35-42.
XIA T, CHEN Y N, GAO J H, et al. Impact of vegetation succession on salt marsh material circulation in Southern Hangzhou Bay[J]. Marine Sciences, 2019, 43(10): 35-42.
[26]
张华国, 郭艳霞, 黄韦艮, 等. 1986年以来杭州湾围垦淤涨状况卫星遥感调查[J]. 国土资源遥感, 2005, 17(2):50-54,81.
ZHANG H G, GUO Y X, HUANG W G, et al. A remote sensing investigation of inning and silting in Hangzhou Bay since 1986[J]. Remote Sensing for Land & Resources, 2005, 17(2): 50-54, 81.
[27]
李加林. 杭州湾南岸互花米草潮滩底质粒度及其分布特征[J]. 海洋科学, 2008, 32(8):53-57.
LI J L. Granularity analyses of superficial sediments of Sparitina alterniflora flat on south coast of Hangzhou Bay[J]. Marine Sciences, 2008, 32(8): 53-57.
[28]
邵学新, 李文华, 吴明, 等. 杭州湾潮滩湿地3种优势植物碳氮磷储量特征研究[J]. 环境科学, 2013, 34(9):3451-3457.
SHAO X X, LI W H, WU M, et al. Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh plants in Hangzhou Bay coastal wetland[J]. Environmental Science, 2013, 34(9): 3451-3457.
[29]
HIRAISHI T, KRUG T, TANABE K, et al. 2013 supple-ment to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands[R]. Switzerland: IPCC, 2014:354.
[30]
冯振兴, 高建华, 陈莲, 等. 互花米草生物量变化对盐沼沉积物有机碳组分和来源的影响:以王港河口潮滩为例[J]. 地球化学, 2016, 45(1):87-97.
FENG Z X, GAO J H, CHEN L, et al. Impact of Spartina alterniflora biomass variation on content and sources of organic carbon fractions in salt marshes: A case study of tidal salt marsh of Wanggang Estuary, Jiangsu Province[J]. Geochimica, 2016, 45(1): 87-97.
[31]
陈一宁, 陈鹭真, 蔡廷禄, 等. 滨海湿地生物地貌学进展及在生态修复中的应用展望[J]. 海洋与湖沼, 2020, 51(5):1055-1065.
CHEN Y N, CHEN L Z, CAI T L, et al. Advances in biogeomorphology in coastal wetlands and its application in ecological restoration[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1055-1065.
[32]
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
[33]
章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学:地球科学, 2015, 45:1641-1648.
ZHANG H B, LUO Y M, LIU X H, et al. Current researches and prospects on the coastal blue carbon[J]. Scientia Sinica Terrae, 2015, 45:1641-1648.
[34]
韩广轩, 王法明, 马俊, 等. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4):373-382.
摘要
盐沼湿地具有很高的碳捕获与存储能力, 是缓解全球变暖的有效蓝色碳汇(蓝碳)。未来气候变暖和海平面上升可能增加盐沼湿地的固碳能力, 其蓝碳功能越来越受到国际社会的重视。该文重点围绕盐沼湿地蓝碳形成的关键过程、光合碳分配过程及影响机制、碳沉积埋藏特征及其来源解析、盐沼湿地土壤碳库稳定性及其微生物机制、盐沼湿地蓝碳过程动态模拟及其增汇潜力等5个方面进行综述。在此基础上, 针对当前研究的不足, 提出今后的研究中需要进一步探究盐沼湿地植被海陆梯度分布格局对碳吸收能力和碳分配的影响, 土壤有机碳沉积和埋藏速率及其对全球变化的响应, 盐沼湿地土壤碳库的稳定性及其横向碳流动, 气候变化和海平面上升背景下盐沼湿地蓝碳模拟与增汇潜力评估, 以及盐沼湿地蓝碳的增汇技术和途径。以期为深入理解盐沼湿地蓝碳形成过程与机制, 预测全球变化背景下盐沼湿地蓝碳功能的潜在变化趋势和制定蓝碳增汇途径提供理论支持, 助力碳达峰、碳中和目标实现。
HAN G X, WANG F M, MA J, et al. Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes[J]. Chinese Journal of Plant Ecology, 2022, 46(4): 373-382.
[35]
陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9):881-898.
摘要
全球气候变化对资源、生态和环境的负面影响日益显现,降低大气CO<sub>2</sub>浓度已经成为全球关注的焦点。潮间带湿地(如红树林和盐沼)具有很强的碳汇功能,是降低CO<sub>2</sub>浓度和减缓全球气候变化的重要途径。红树林和盐沼作为重要的海岸带蓝碳生态系统,其土壤具有极高的储碳能力。由于受潮汐和降雨等驱动力的控制,红树林和盐沼土壤间隙水碳交换过程在海岸带蓝碳汇估算中具有较大的不确定性。同时,红树林和盐沼间隙水碳交换过程也是海岸带蓝碳汇相关研究中的前沿性科学问题,具有较大的挑战性。红树林和盐沼间隙水交换促使大量沉积物中的碳输出并存储于海洋,其可能是除了湿地碳埋藏之外的另一个重要碳汇,但目前对此尚未开展系统研究。总结论述了红树林和盐沼生境土壤间隙水交换速率及其携带蓝碳通量和控制因素,期望在对全球红树林和盐沼生态系统蓝碳收支和碳汇潜力进行评估中对其土壤间隙水过程携带的蓝碳通量引起足够的重视。这将深化对红树林和盐沼生态系统碳收支平衡和循环过程的认识,进而在全球气候变化的背景下,为更好地发挥海岸带蓝碳汇功能、促进红树林和盐沼生态系统建设和保护以及海岸带可持续发展提供科学支撑。
CHEN X G, LI L, DU J Z. Porewater exchange and the related carbon sink potential in mangroves and saltmarshes[J]. Advances in Earth Science, 2022, 37(9): 881-898.

The negative impact of global climate change on resources, ecology, and the environment is becoming increasingly apparent. Hence, reducing the atmospheric carbon dioxide (CO2) concentration has become a global concern. Intertidal wetlands (e. g., mangroves and salt marshes) have strong carbon sink functions that can reduce the CO2 concentration, thus mitigating global climate change. Mangroves and salt marshes are important coastal blue carbon ecosystems characterized by high soil carbon storage. Porewater exchange and associated carbon exchange driven by tides and rainfall in mangroves and salt marshes are challenging issues when estimating the effects of coastal blue carbon sinks. Large amounts of porewater-derived sediment carbon outwellings remain in the ocean and may represent an important carbon sink; however, they are poorly understood, despite being potentially significant components of the salt marsh carbon budget. This review aims to quantify the porewater exchange rate and related carbon fluxes, analyze their driving mechanisms, and reassess the carbon budgets and carbon sink potentials of mangroves and salt marshes. This study promotes understanding the carbon balance and cycle processes associated with mangrove and salt marsh ecosystems, and provides a scientific basis for the construction, protection, and sustainable development of coastal blue carbon sinks in the context of global climate change.

[36]
王淑琼, 王瀚强, 方燕, 等. 崇明岛滨海湿地植物群落固碳能力[J]. 生态学杂志, 2014, 33(4):915-921.
摘要
通过对植物群落实地调查和室内相关指标测定,对崇明岛滨海湿地植物群落固碳的时间动态与分布格局进行了研究。结果表明:崇明岛滨海湿地植物群落大致分为芦苇(Phragmites australis)、海三棱藨草(Scirpus mariqueter)和互花米草(Spartina alterniflora)3种类型;芦苇生长高峰为3&mdash;5月,年固碳能力为(1.02&plusmn;0.12) kg&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>,未围垦滨岸均有分布,其中北岸植株生物量最低,出叶后生物量动态变化可用叶氮含量高低表征;海三棱藨草3&mdash;5月快速生长,6月初生长稍停滞,后继续增长,年固碳能力为(0.33&plusmn;0.05) kg&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>,集中于南岸;互花米草7&mdash;9月为生长高峰,年固碳能力为(1.32&plusmn;0.10) kg&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>,分布于北湖以东至东滩,其种群扩张严重威胁当地生物多样性;崇明岛滨海湿地植物群落年固定CO<sub>2</sub>量为2.5&times;10<sup>5</sup> t&middot;a<sup>-1</sup>,其中南岸湿地年固碳较为丰富,年固碳的快速积累发生在4&mdash;7月。可见,崇明岛滨海湿地植物群落具较强固碳功能,且存在明显的时空动态,对上海市碳增汇减排具有重要作用。
WANG S Q, WANG H Q, FANG Y, et al. Ability of plant carbon fixation in the coastal wetland of Chongming Island[J]. Chinese Journal of Ecology, 2014, 33(4): 915-921.
[37]
CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4): 1111.
[38]
DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 2013, 3(11): 961-968.
[39]
陈建芳, 张海生, 金海燕, 等. 北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究, 2004, 16(3):193-201.
CHEN J F, ZHANG H S, JIN H Y, et al. Accumulation of sedimentary organic carbon in the Arctic shelves and its significance on global carbon budget[J]. Chinese Journal of Polar Research, 2004, 16(3): 193-201.

Sedimentary organic carbon accumulation rate in continental margin seas is more than one order higher than that of the oceans. Ocean margins play a very important role in global carbon budget since about 80% of terrestrial and marine organic carbon buried in the continental shelves. Of the Arctic Ocean total area over 30% is shelf, and it is accounted for one-fourth of global shelf area. Because of its ice cover biological pump in the Arctic Ocean was thought to be very limited, thus it has not been considered as a sink of carbon dioxide. With the recent observation of global warming, decreasing of ice cover in shelf area would lead to potential simulate primary production, thus increase sedimentary organic carbon accumulation rate in the shelves. In this review paper, organic carbon sources, riverine discharge of sediment and nutrients, sea ice cover variation, and biological pump were discussed in order to evaluation potential increasing of sedimentary organic carbon accumulation in the arctic shelves under global warming.

[40]
高抒. 海岸与陆架沉积:动力过程、全球变化影响和地层记录[J]. 第四纪研究, 2010, 30(5):856-863.
GAO S. Coastal and shelf sedimentation in association with dynamic processes, global change impacts, and stratigraphic records: An overview of the scientific problems[J]. Quaternary Sciences, 2010, 30(5): 856-863.
[41]
石学法, 胡利民, 乔淑卿, 等. 中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏[J]. 海洋科学进展, 2016, 34(3):313-327.
SHI X F, HU L M, QIAO S Q, et al. Progress in research of sedimentary organic carbon in the East China Sea: Sources, dispersal and sequestration[J]. Advances in Marine Science, 2016, 34(3): 313-327.
[42]
CALLAWAY J C, CAHOON D R, LYNCH J C. The surface elevation table-marker horizon method for measuring wetland accretion and elevation dynamics[M] //DELAUNER D, REDDYK R, RICHARDSONC J, et al.Methods in biogeochemistry of wetlands. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015: 901-917.
[43]
吴绽蕾, 王东启, 李杨杰, 等. 长江口崇明东滩海三棱藨草对沉积物有机碳库的贡献研究[J]. 环境科学学报, 2015, 35(11):3639-3646.
WU Z L, WANG D Q, LI Y J, et al. The contribution of Scirpus mariqueter to sediment carbon storage of Chongming East Tidal Flat wetland in Yangtze River Estuary[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3639-3646.
[44]
王爱军, 高抒, 贾建军, 等. 江苏王港盐沼的现代沉积速率[J]. 地理学报, 2005, 60(1):61-70.
WANG A J, GAO S, JIA J J, et al. Contemporary sedimentation rates on salt marshes at Wanggang, Jiangsu, China[J]. Acta Geographica Sinica, 2005, 60(1): 61-70.

The total area of coastal wetlands exceeds 5000 km2 in Jiangsu Province, China, but it has been decreasing rapidly as a result of intense reclamation activities. Two types of plants, Spartina angelica and Spartina alterniflora, were introduced successively into the Jiangsu coast, in order to protect the coastline from erosion and to increase the accumulation rate. 210Pb and 137Cs analyses were carried out for sediment samples from the salt marshes of Wangang, to derive the sedimentation rate, on the basis of an evaluation of the background values and factors affecting the enrichment of 210Pb. Analysis of a typical sediment column of the tidal flat shows that the absorption of 210Pb in the silt-dominated sediment is weak. Influences of storm events, bioturbation, material sources and analytical error also have an effect. As a result, some abnormal data points are present. These data were removed before the calculation of the sedimentation rate. The sedimentation rate was 3.3 cm a-1 on average. Based upon analysis of the 137Cs dating, the rate since 1963 was 3.1 cm a-1 on average, similar to the data by 210Pb dating and from previous studies.

基金

国家重点研发计划项目(2022YFC3105404)
浙江省自然科学基金重大项目(DT23D060007)
浙江省自然科学基金重点项目(LZ21D060001)

编辑: 段焱
PDF(6011 KB)

Accesses

Citation

Detail

段落导航
相关文章

/