海洋学研究 ›› 2023, Vol. 41 ›› Issue (1): 55-67.DOI: 10.3969-j.issn.1001-909X.2023.01.005
陈一宁1,2(), 张子严1,3, 陈鹭真4, 张家林4, 刘兵1,5, 夏小明1,2, 王欣凯1,2, 蔡廷禄1,2,*()
收稿日期:
2022-11-28
修回日期:
2022-12-23
出版日期:
2023-03-15
发布日期:
2023-04-28
通讯作者:
蔡廷禄(1982—),男,高级工程师,主要从事滨海湿地现场观测技术研究,E-mail:作者简介:
陈一宁(1979—),女,浙江省温州市人,研究员,主要从事滨海湿地生物地貌学及碳汇效应研究,E-mail:yiningchen@sio.org.cn。
基金资助:
CHEN Yining1,2(), ZHANG Ziyan1,3, CHEN Luzhen4, ZHANG Jialin4, LIU Bing1,5, XIA Xiaoming1,2, WANG Xinkai1,2, CAI Tinglu1,2,*()
Received:
2022-11-28
Revised:
2022-12-23
Online:
2023-03-15
Published:
2023-04-28
摘要:
滨海盐沼的碳库变化可为蓝碳碳汇核算提供依据。为量化短时间尺度(季节到年际尺度)内滨海盐沼碳库的固碳速率,基于高分辨率的地表高程监测系统,于2022年在杭州湾南岸典型滨海盐沼开展了季节性的观测和采样分析。研究结果表明,在观测期间,本地种海三棱藨草和外来种互花米草的生长呈现季节性变化特征,植物生长主要集中在3—9月。就植物碳库的地下部分而言,海三棱藨草固碳量达到11 g C·m-2,互花米草盐沼则较高,为56 g C·m-2。地表高程监测数据表明,海三棱藨草盐沼的沉积速率为12.30 cm·a-1,略低于互花米草盐沼的沉积速率(13.02 cm·a-1)。结合沉积速率与沉积物容重、有机碳含量等数据,可以算得观测期间,海三棱藨草盐沼沉积物碳埋藏速率为460 g C·m-2·a-1,互花米草盐沼沉积物碳埋藏速率为588 g C·m-2·a-1,这两种滨海湿地的碳埋藏速率也具有季节性,在夏、秋季达到高值。结合植物碳库和沉积物碳库结果可知,杭州湾南岸滨海盐沼生态系统具有较高的固碳速率,外来种生态系统固碳速率(644 g C·m-2·a-1)高于本地种生态系统固碳速率(471 g C·m-2·a-1)。在将来的滨海湿地蓝碳管理工作中,需要考虑不同物种之间的差异性。
中图分类号:
陈一宁, 张子严, 陈鹭真, 张家林, 刘兵, 夏小明, 王欣凯, 蔡廷禄. 杭州湾南岸滨海盐沼碳库的季节性变化[J]. 海洋学研究, 2023, 41(1): 55-67.
CHEN Yining, ZHANG Ziyan, CHEN Luzhen, ZHANG Jialin, LIU Bing, XIA Xiaoming, WANG Xinkai, CAI Tinglu. Seasonal variation in coastal saltmarsh carbon stocks, south bank of Hangzhou Bay[J]. Journal of Marine Sciences, 2023, 41(1): 55-67.
监测内容 | 监测指标 | 监测方式 |
---|---|---|
植物碳库增量 | 植物地上生物量 | 现场监测、现场采样、 室内分析 |
植物地下生物量 | ||
植物有机碳含量 | ||
沉积物碳库增量 | 地表高程 | 现场采样、室内分析 |
沉积物有机碳含量 | ||
沉积物容重 |
表1 滨海盐沼碳库变化监测参数
Tab.1 Measured parameters for coastal saltmarsh carbon stock changes
监测内容 | 监测指标 | 监测方式 |
---|---|---|
植物碳库增量 | 植物地上生物量 | 现场监测、现场采样、 室内分析 |
植物地下生物量 | ||
植物有机碳含量 | ||
沉积物碳库增量 | 地表高程 | 现场采样、室内分析 |
沉积物有机碳含量 | ||
沉积物容重 |
图4 海三棱藨草和互花米草盐沼沉积物容重与有机碳含量调查结果
Fig.4 The results for sediment bulk density and organic matter content within the Scirpus mariqueter saltmarsh and the Spartina alterniflora saltmarsh
图5 海三棱藨草和互花米草盐沼地表高程与有机碳埋藏量监测结果
Fig.5 The results for sediment surface elevation changes and sediment organic carbon accumulation within the Scirpus mariqueter saltmarsh and the Spartina alterniflora saltmarsh
[1] |
WILLIAMS T P, BUBB J M, LESTER J N. Metal accumulation within salt marsh environments: A review[J]. Marine Pollution Bulletin, 1994, 28(5): 277-290.
DOI URL |
[2] | BOORMAN L A. Saltmarsh review: An overview of coastal saltmarshes, their dynamic and sensitivity characteristics for conservation and management[R]//Joint Nature Conservation Committee Report, 2003, 334: 1-116. |
[3] | SCHWARTZ M L. Encyclopedia of coastal science[M]. Dordrecht: Springer Netherlands, 2005: 965-975. |
[4] | 周晨昊, 毛覃愉, 徐晓, 等. 中国海岸带蓝碳生态系统碳汇潜力的初步分析[J]. 中国科学:生命科学, 2016, 46(4):475-486. |
ZHOU C H, MAO Q Y, XU X, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone[J]. Scientia Sinica: Vitae, 2016, 46(4): 475-486.
DOI URL |
|
[5] | 刘钰, 李秀珍, 闫中正, 等. 长江口九段沙盐沼湿地芦苇和互花米草生物量及碳储量[J]. 应用生态学报, 2013, 24(8):2129-2134. |
LIU Y, LI X Z, YAN Z Z, et al. Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan Shoal Wetland of Yangtze Estuary, East China[J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2129-2134. | |
[6] | 刘金娥, 苏海蓉, 徐杰, 等. 互花米草对中国海滨湿地土壤有机碳库的影响[J]. 生态环境学报, 2017, 26(6):1085-1092. |
LIU J E, SU H R, XU J, et al. How does Spartina alterniflora affect the soil organic carbon pool of coastal wetlands in China[J]. Ecology and Environmental Sciences, 2017, 26(6): 1085-1092. | |
[7] |
ZHANG G L, BAI J H, JIA J, et al. Soil organic carbon contents and stocks in coastal salt marshes with Spartina alterniflora following an invasion chronosequence in the Yellow River Delta, China[J]. Chinese Geographical Science, 2018, 28(3): 374-385.
DOI |
[8] | WANG F M, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review, 2021, 8(9): nwaa296. |
[9] | 陈鹭真, 潘良浩, 邱广龙. 中国滨海蓝碳及其人为活动影响[J]. 广西科学院学报, 2021, 37(3):186-194. |
CHEN L Z, PAN L H, QIU G L. Coastal blue carbon sink in China under the influence of human activity[J]. Journal of Guangxi Academy of Sciences, 2021, 37(3): 186-194. | |
[10] |
MENG W Q, FEAGIN R A, HU B B, et al. The spatial distribution of blue carbon in the coastal wetlands of China[J]. Estuarine, Coastal and Shelf Science, 2019, 222: 13-20.
DOI URL |
[11] | 唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学:地球科学, 2018, 48:661-670. |
TANG J W, YE S F, CHEN X C, et al. Coastal blue carbon: Concept, study method, and the application to ecological restoration[J]. Science China Earth Sciences, 2018, 48: 637-646. | |
[12] | 曹磊, 宋金明, 李学刚, 等. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J]. 应用生态学报, 2013, 24(7):2040-2048. |
CAO L, SONG J M, LI X G, et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 2040-2048. | |
[13] | HOWARDS J, HOYT S, ISENSEE K, et al. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses[M]. Washington D.C., U.S: Conservation International, 2014:182. |
[14] | 申霞, 王鹏, 王为攀, 等. 滨海盐沼净碳汇能力研究方法综述[J]. 生态学杂志, 2022, 41(4):792-803. |
SHEN X, WANG P, WANG W P, et al. Review on the estimation methods of net carbon sinks of coastal salt marshes[J]. Chinese Journal of Ecology, 2022, 41(4): 792-803. | |
[15] | 陈鹭真, 卢伟志, 林光辉. 滨海蓝碳:红树林、盐沼、海草床碳储量和碳排放因子评估方法[M]. 厦门: 厦门大学出版社, 2018:189. |
CHEN L Z, LU W Z, LIN G H. Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows[M]. Xiamen: Xiamen University Press, 2018: 189. | |
[16] | 陈鹭真. 地表高程监测在滨海蓝碳碳收支评估中的应用[J]. 海洋与湖沼, 2022, 53(2):261-268. |
CHEN L Z. Application of surface elevation table for carbon budget assessments in coastal blue carbon ecosystems[J]. Oceanologia et Limnologia Sinica, 2022, 53(2): 261-268. | |
[17] |
MA Z J, MELVILLE D S, LIU J G, et al. Rethinking China’s new great wall[J]. Science, 2014, 346(6212): 912-914.
DOI URL |
[18] |
ZHANG Y H, HUANG G M, WANG W Q, et al. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China[J]. Ecology, 2012, 93(3): 588-597.
DOI URL |
[19] |
ZHANG Y H, MENG H Y, WANG Y, et al. Herbivory enhances the resistance of mangrove forest to cordgrass invasion[J]. Ecology, 2018, 99(6): 1382-1390.
DOI PMID |
[20] |
REN J L, CHEN J S, XU C L, et al. An invasive species erodes the performance of coastal wetland protected areas[J]. Science Advances, 2021, 7(42): eabi8943.
DOI URL |
[21] | 李炎, BERGER G W, VAN WEERING T C E. 杭州湾南岸潮滩的210Pb分布及其沉积学意义[J]. 东海海洋, 1993, 11(1):34-43. |
LI Y, BERGER G W, VAN WEERING T C E. 210Pb as a tracer for the tidal flat sedimentation in the southern Hangzhou Bay[J]. Donghai Marine Science, 1993, 11(1): 34-43. | |
[22] | 李炎, 谢钦春. 杭州湾庵东浅滩地貌演变规律[J]. 东海海洋, 1993, 11(2):25-33. |
LI Y, XIE Q C. Dynamical development of the Andong tidal flat in Hangzhou Bay, China[J]. Donghai Marine Science, 1993, 11(2): 25-33. | |
[23] |
HUANG S L, CHEN Y N, LI Y. Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species[J]. Water Science and Engineering, 2020, 13(1): 34-44.
DOI URL |
[24] | 高抒, 杜永芬, 谢文静, 等. 苏沪浙闽海岸互花米草盐沼的环境-生态动力过程研究进展[J]. 中国科学:地球科学, 2014, 44:2339-2357. |
GAO S, DU Y F, XIE W J, et al. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China: Earth Sciences, 2014, 57: 2567-2586.
DOI URL |
|
[25] | 夏添, 陈一宁, 高建华, 等. 植被演替对杭州湾南岸盐沼物质循环的影响[J]. 海洋科学, 2019, 43(10):35-42. |
XIA T, CHEN Y N, GAO J H, et al. Impact of vegetation succession on salt marsh material circulation in Southern Hangzhou Bay[J]. Marine Sciences, 2019, 43(10): 35-42. | |
[26] | 张华国, 郭艳霞, 黄韦艮, 等. 1986年以来杭州湾围垦淤涨状况卫星遥感调查[J]. 国土资源遥感, 2005, 17(2):50-54,81. |
ZHANG H G, GUO Y X, HUANG W G, et al. A remote sensing investigation of inning and silting in Hangzhou Bay since 1986[J]. Remote Sensing for Land & Resources, 2005, 17(2): 50-54, 81. | |
[27] | 李加林. 杭州湾南岸互花米草潮滩底质粒度及其分布特征[J]. 海洋科学, 2008, 32(8):53-57. |
LI J L. Granularity analyses of superficial sediments of Sparitina alterniflora flat on south coast of Hangzhou Bay[J]. Marine Sciences, 2008, 32(8): 53-57. | |
[28] | 邵学新, 李文华, 吴明, 等. 杭州湾潮滩湿地3种优势植物碳氮磷储量特征研究[J]. 环境科学, 2013, 34(9):3451-3457. |
SHAO X X, LI W H, WU M, et al. Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh plants in Hangzhou Bay coastal wetland[J]. Environmental Science, 2013, 34(9): 3451-3457. | |
[29] | HIRAISHI T, KRUG T, TANABE K, et al. 2013 supple-ment to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands[R]. Switzerland: IPCC, 2014:354. |
[30] | 冯振兴, 高建华, 陈莲, 等. 互花米草生物量变化对盐沼沉积物有机碳组分和来源的影响:以王港河口潮滩为例[J]. 地球化学, 2016, 45(1):87-97. |
FENG Z X, GAO J H, CHEN L, et al. Impact of Spartina alterniflora biomass variation on content and sources of organic carbon fractions in salt marshes: A case study of tidal salt marsh of Wanggang Estuary, Jiangsu Province[J]. Geochimica, 2016, 45(1): 87-97. | |
[31] | 陈一宁, 陈鹭真, 蔡廷禄, 等. 滨海湿地生物地貌学进展及在生态修复中的应用展望[J]. 海洋与湖沼, 2020, 51(5):1055-1065. |
CHEN Y N, CHEN L Z, CAI T L, et al. Advances in biogeomorphology in coastal wetlands and its application in ecological restoration[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1055-1065. | |
[32] |
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
DOI URL |
[33] | 章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学:地球科学, 2015, 45:1641-1648. |
ZHANG H B, LUO Y M, LIU X H, et al. Current researches and prospects on the coastal blue carbon[J]. Scientia Sinica Terrae, 2015, 45:1641-1648.
DOI URL |
|
[34] |
韩广轩, 王法明, 马俊, 等. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4):373-382.
DOI |
HAN G X, WANG F M, MA J, et al. Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes[J]. Chinese Journal of Plant Ecology, 2022, 46(4): 373-382.
DOI URL |
|
[35] |
陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9):881-898.
DOI |
CHEN X G, LI L, DU J Z. Porewater exchange and the related carbon sink potential in mangroves and saltmarshes[J]. Advances in Earth Science, 2022, 37(9): 881-898.
DOI |
|
[36] | 王淑琼, 王瀚强, 方燕, 等. 崇明岛滨海湿地植物群落固碳能力[J]. 生态学杂志, 2014, 33(4):915-921. |
WANG S Q, WANG H Q, FANG Y, et al. Ability of plant carbon fixation in the coastal wetland of Chongming Island[J]. Chinese Journal of Ecology, 2014, 33(4): 915-921. | |
[37] | CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4): 1111. |
[38] |
DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 2013, 3(11): 961-968.
DOI |
[39] | 陈建芳, 张海生, 金海燕, 等. 北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究, 2004, 16(3):193-201. |
CHEN J F, ZHANG H S, JIN H Y, et al. Accumulation of sedimentary organic carbon in the Arctic shelves and its significance on global carbon budget[J]. Chinese Journal of Polar Research, 2004, 16(3): 193-201. | |
[40] | 高抒. 海岸与陆架沉积:动力过程、全球变化影响和地层记录[J]. 第四纪研究, 2010, 30(5):856-863. |
GAO S. Coastal and shelf sedimentation in association with dynamic processes, global change impacts, and stratigraphic records: An overview of the scientific problems[J]. Quaternary Sciences, 2010, 30(5): 856-863. | |
[41] | 石学法, 胡利民, 乔淑卿, 等. 中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏[J]. 海洋科学进展, 2016, 34(3):313-327. |
SHI X F, HU L M, QIAO S Q, et al. Progress in research of sedimentary organic carbon in the East China Sea: Sources, dispersal and sequestration[J]. Advances in Marine Science, 2016, 34(3): 313-327. | |
[42] | CALLAWAY J C, CAHOON D R, LYNCH J C. The surface elevation table-marker horizon method for measuring wetland accretion and elevation dynamics[M] //DELAUNER D, REDDYK R, RICHARDSONC J, et al.Methods in biogeochemistry of wetlands. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015: 901-917. |
[43] | 吴绽蕾, 王东启, 李杨杰, 等. 长江口崇明东滩海三棱藨草对沉积物有机碳库的贡献研究[J]. 环境科学学报, 2015, 35(11):3639-3646. |
WU Z L, WANG D Q, LI Y J, et al. The contribution of Scirpus mariqueter to sediment carbon storage of Chongming East Tidal Flat wetland in Yangtze River Estuary[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3639-3646. | |
[44] | 王爱军, 高抒, 贾建军, 等. 江苏王港盐沼的现代沉积速率[J]. 地理学报, 2005, 60(1):61-70. |
WANG A J, GAO S, JIA J J, et al. Contemporary sedimentation rates on salt marshes at Wanggang, Jiangsu, China[J]. Acta Geographica Sinica, 2005, 60(1): 61-70.
DOI |
[1] | 王奕恒, 郝锵, 陈建芳, 朱元励, 金海燕, 周锋, 张伟. 夏季长江口不同粒级浮游植物碱性磷酸酶活性[J]. 海洋学研究, 2022, 40(4): 25-37. |
[2] | 张宸浩, 张明亮, 柴崇顼, 等. 基于OpenFOAM波浪—植物相互作用的数值模拟研究[J]. 海洋学研究, 2022, 40(1): 42-52. |
[3] | 孙振皓, 盛留洋, 江新琴, 马晓, 王斌, 曾江宁, 江志兵, . 2017年夏季长江口浮游植物暖水种增多现象分析[J]. 海洋学研究, 2021, 39(4): 82-90. |
[4] | 陈杰, 龚尚鹏, 官志鑫, 张竹, 谢振东, 雷佳欣, 彭浩. 根、茎、叶定量概化植物模型沿程不规则波消减实验[J]. 海洋学研究, 2019, 37(4): 48-59. |
[5] | 粟丽, 陈作志, 黄梓荣, 许友伟. 2015年春季南海北部陆架海域网采浮游植物群落结构及其与环境因子关系[J]. 海洋学研究, 2019, 37(3): 86-96. |
[6] | 高慧, 赵辉, 沈春燕, 陈法锦. 冬季吕宋岛西北海域叶绿素时空变化特征[J]. 海洋学研究, 2018, 36(1): 75-85. |
[7] | 曾祥茜, 乐凤凤, 周文礼, 蔡昱明, 郝锵. 2009年冬季南海北部浮游植物粒度分级生物量和初级生产力[J]. 海洋学研究, 2017, 35(3): 67-78. |
[8] | 陈悦, 刘晶晶, 江志兵, 黄伟, 寿鹿, 曾江宁. 舟山群岛海域网采浮游植物分布与多样性[J]. 海洋学研究, 2016, 34(1): 76-83. |
[9] | 张健, 李佳芮, 翟伟康, 潘嵩, 王园君. 2013年夏季北黄海浮游植物群集[J]. 海洋学研究, 2015, 33(3): 84-90. |
[10] | 尹翠玲, 张秋丰, 牛福新, 石海明, 徐玉山, 屠建波. 渤海湾天津近岸海域初级生产力及网采浮游植物种类组成[J]. 海洋学研究, 2015, 33(2): 82-92. |
[11] | 刘晶晶, 江志兵, 陈悦, 曾江宁, 黄伟, 彭玲, 骆鑫. 三门湾春季网采浮游植物群落特征[J]. 海洋学研究, 2015, 33(1): 74-80. |
[12] | 李冬融, 戴鑫烽, 陆斗定, 夏平. 2012年夏季南海西北部网采浮游植物群落结构[J]. 海洋学研究, 2014, 32(3): 87-96. |
[13] | 尹翠玲, 张秋丰, 曹春晖, 刘洋, 崔健. 2012年春季渤海湾天津近岸海域网采浮游植物群落结构初探[J]. 海洋学研究, 2013, 31(4): 80-89. |
[14] | 肖武鹏, 柳欣, 黄邦钦. 春季东海近岸表层浮游植物群落结构及其与环境因子的关系[J]. 海洋学研究, 2013, 31(3): 76-82. |
[15] | 姜犁明, 赵明忠, 徐智焕, 杨季芳, 董良飞, 孙晓欣, 徐旭, 杨丹. 2011年秋季和2012年春季大亚湾海域浮游植物的分布及主要影响因素[J]. 海洋学研究, 2013, 31(2): 86-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||