海洋学研究 ›› 2023, Vol. 41 ›› Issue (2): 104-113.DOI: 10.3969/j.issn.1001-909X.2023.02.009
王跃云1,2(), 严润玄1,2,3, 王春生1,2,*()
收稿日期:
2022-05-10
修回日期:
2022-10-20
出版日期:
2023-06-15
发布日期:
2023-07-27
通讯作者:
*王春生(1964—),男,研究员,主要从事海洋生态学研究,E-mail:作者简介:
王跃云(1988—),男,山东省武城县人,博士,副研究员,主要从事海洋生物学研究,E-mail:wangyueyun1988@yeah.net。
基金资助:
WANG Yueyun1,2(), YAN Runxuan1,2,3, WANG Chunsheng1,2,*()
Received:
2022-05-10
Revised:
2022-10-20
Online:
2023-06-15
Published:
2023-07-27
摘要:
深海多毛类环节动物的多样性与地理分布格局是深海生物多样性研究关注的焦点问题之一。基于海洋生物地理信息系统(Ocean Biogeographic Information System, OBIS)数据库中的公开数据分析了西太平洋深海底栖多毛类动物的多样性与地理分布格局。多毛类数据多分布于靠近临海国的海沟、海山等显著地貌区,共记录到51个科318个物种,其中,多鳞虫科是物种多样性最高的科,且具有最大的深度分布范围。深海底栖多毛类物种数量随着水深增加而下降,但在2 500~3 000 m水深处以及4 000~4 500 m水深处略增多。分析显示深海底栖多毛类的特有性水平较高,在热液口环境,形成了以热液口特有种为特征的底栖多毛类动物区系。西太平洋深海底栖多毛类动物分布可划分为4类生物地理区:日本海生物地理区域、以相模湾为代表的靠近大陆的生物地理区域、以深海热液口为典型特征的生物地理区域(冲绳海槽、马努斯盆地、斐济海盆区)以及以深海海沟、平原(日本海槽-千岛-堪察加海沟区、澳大利亚东侧区、新西兰区)为特征的生物地理区域。
中图分类号:
王跃云, 严润玄, 王春生. 西太平洋深海底栖多毛类动物地理分布特征[J]. 海洋学研究, 2023, 41(2): 104-113.
WANG Yueyun, YAN Runxuan, WANG Chunsheng. Geographical distribution pattern of deep-sea benthic polychaetes in the western Pacific[J]. Journal of Marine Sciences, 2023, 41(2): 104-113.
序号 | 科名 | 记录数 | 分布水深/m |
---|---|---|---|
1 | 阿尔文虫科Alvinellidae | 247 | 1 002~3 600 |
2 | 多鳞虫科Polynoidae | 141 | 1 000~12 000 |
3 | 鳞沙蚕科Aphroditidae | 99 | 1 000~4 800 |
4 | 米列虫科Melinnidae | 96 | 1 005~2 821 |
5 | 叉螠科Bonelliidae | 86 | 1 088~9 950 |
6 | 欧努菲虫科Onuphidae | 83 | 1 000~4 744 |
7 | 双栉虫科Ampharetidae | 81 | 1 028~5 613 |
8 | 竹节虫科Maldanidae | 65 | 1 005~7 290 |
9 | 西伯加虫科Siboglinidae | 55 | 1 053~9 600 |
10 | 仙虫科Amphinomidae | 44 | 1 013~4 200 |
表1 西太平洋深海底栖多毛类记录数前10个科
Tab.1 The top 10 deep-sea benthic polychaete families with the most records in the western Pacific
序号 | 科名 | 记录数 | 分布水深/m |
---|---|---|---|
1 | 阿尔文虫科Alvinellidae | 247 | 1 002~3 600 |
2 | 多鳞虫科Polynoidae | 141 | 1 000~12 000 |
3 | 鳞沙蚕科Aphroditidae | 99 | 1 000~4 800 |
4 | 米列虫科Melinnidae | 96 | 1 005~2 821 |
5 | 叉螠科Bonelliidae | 86 | 1 088~9 950 |
6 | 欧努菲虫科Onuphidae | 83 | 1 000~4 744 |
7 | 双栉虫科Ampharetidae | 81 | 1 028~5 613 |
8 | 竹节虫科Maldanidae | 65 | 1 005~7 290 |
9 | 西伯加虫科Siboglinidae | 55 | 1 053~9 600 |
10 | 仙虫科Amphinomidae | 44 | 1 013~4 200 |
图4 栅格物种集合分析图 (左侧柱状图:栅格的物种数;上方柱状图:交集数量,表示共有或特有的物种数量;点图矩阵:不同栅格的交集,矩阵左侧数字为栅格编号;单独实心黑点:每个栅格特有的物种数量;实心黑点与连线:不同栅格间的共有物种。)
Fig.4 Upset plot showing intersections of different grids (left bar chart: species richness in each grids; upper bar chart: intersection size showing number of shared or endemic species; points matrix: intersection of grids, the numbers on the left of the matrix represent the number of grid; black solid circle: number of species unique to each grid; solid circle and lines: shared species between different grids.)
图5 根据地理单元的PAE分析 Jkk—日本海槽-千岛-堪察加海沟区;SoJ—日本海区;Sb—相模湾区;Okinawa—冲绳海槽区;Mb—马努斯盆地区;NFb—斐济海盆区;NZ—新西兰区;EA—澳大利亚东侧区)
Fig.5 PAE result base on geographical feature units
[1] |
WEBB T J, VANDEN BERGHE E, O’DOR R. Biodiversity’s big wet secret: The global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean[J]. PLoS One, 2010, 5(8): e10223.
DOI URL |
[2] | GALÉRON J. Deep-sea Environment[M] // FOUQUETY, LACROIXD. Deep marine mineral resources. Dordrecht: Springer, 2014: 41-54. |
[3] |
DANOVARO R, CORINALDESI C, DELL’ANNO A, et al. The deep-sea under global change[J]. Current Biology, 2017, 27(11): 461-465.
DOI PMID |
[4] |
COSTA C, FANELLI E, MARINI S, et al. Global deep-sea biodiversity research trends highlighted by science mapping approach[J]. Frontiers in Marine Science, 2020, 7: 384.
DOI URL |
[5] |
MORA C, TITTENSOR D P, ADL S, et al. How many species are there on earth and in the ocean?[J]. PLoS Biology, 2011, 9(8): e1001127.
DOI URL |
[6] |
PAMUNGKAS J, GLASBY C J, READ G B, et al. Progress and perspectives in the discovery of polychaete worms (Annelida) of the world[J]. Helgoland Marine Research, 2019, 73(1): 1-10.
DOI |
[7] |
BOURQUE J R, ROBERTSON C M, BROOKE S, et al. Macrofaunal communities associated with chemosynthetic habitats from the U.S. Atlantic margin: A comparison among depth and habitat types[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 137: 42-55.
DOI URL |
[8] |
BRANDT A, BROYER C D, MESEL I D, et al. The biodiversity of the deep Southern Ocean benthos[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1477): 39-66.
DOI URL |
[9] |
SHIELDS M A, BLANCO-PEREZ R. Polychaete abundance, biomass and diversity patterns at the Mid-Atlantic Ridge, North Atlantic Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 98: 315-325.
DOI URL |
[10] |
BLAKE J A, NARAYANASWAMY B E. Benthic infaunal communities across the Weddell Sea Basin and South Sandwich Slope, Antarctica[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51(14-16): 1797-1815.
DOI URL |
[11] |
CHIVERS A J, NARAYANASWAMY B E, LAMONT P A, et al. Changes in polychaete standing stock and diversity on the northern side of Senghor Seamount (NE Atlantic)[J]. Biogeosciences, 2013, 10: 3535-3546.
DOI URL |
[12] | RAMIREZ-LLODRA E, SHANK T, GERMAN C. Biodiversity and biogeography of hydrothermal vent species: Thirty years of discovery and investigations[J]. Oceanography, 2007, 20(1): 30-41. |
[13] | 徐奎栋, 林茂, 王少青, 等. 中国海及西太平洋生物分类研究进展及展望[J]. 海洋与湖沼, 2020, 51(4):728-739. |
XU K D, LIN M, WANG S Q, et al. Marine taxonomy in the China Seas and western Pacific Ocean: Progress and prospects[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 728-739. | |
[14] | 李新正, 寇琦, 王金宝, 等. 中国海洋无脊椎动物分类学与系统演化研究进展与展望[J]. 海洋科学, 2020, 44(7):26-70. |
LI X Z, KOU Q, WANG J B, et al. Advances and perspectives of researches on taxonomy and phylogeny of marine invertebrates in China[J]. Marine Sciences, 2020, 44(7): 26-70. | |
[15] |
ZHANG Y J, CHEN C, QIU J W. Sexually dimorphic scale worms (Annelida: Polynoidae) from hydrothermal vents in the Okinawa trough: Two new species and two new sex morphs[J]. Frontiers in Marine Science, 2018, 5: 112.
DOI URL |
[16] |
SUI J X, LI X Z. A new species and new record of deep-sea scale-worms (Polynoidae: Polychaeta) from the Okinawa Trough and the South China Sea[J]. Zootaxa, 2017, 4238(4): 562-570.
DOI PMID |
[17] |
SUI J X, LI X Z, KOU Q. A new species of the genus Intoshella Darboux, 1899 (Polychaeta: Polynoidae) com-mensal with a deep-sea sponge from a seamount near the Mariana Trench[J]. Marine Biodiversity, 2019, 49(3): 1479-1488.
DOI |
[18] |
WU X W, ZHAN Z F, XU K D. Two new and two rarely known species of Branchinotogluma (Annelida: Polynoidae) from deep-sea hydrothermal vents of the Manus Back-Arc Basin, with remarks on the diversity and biogeography of vent polynoids[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 149: 103051.
DOI URL |
[19] | WU X W, XU K D. Levensteiniella manusensis sp. nov., a new polychaete species (Annelida: Polynoidae) from deep-sea hydrothermal vents in the Manus Back-Arc Basin, Western Pacific[J]. Zootaxa, 2018, 4388(1): 102-110. |
[20] |
WU X W, HUTCHINGS P, MURRAY A, et al. Laetmonice iocasica sp. nov., a new polychaete species (Annelida: Aphroditidae) from seamounts in the tropical Western Pacific, with remarks on L.producta Grube, 1877[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1805-1816.
DOI |
[21] | WANG Y Y, ZHOU Y D, WANG C S. Ceuthonoe nezhai gen. et sp. n. (Polynoidae: Polynoinae) commensal with sponges from Weijia Guyot, western Pacific[J]. Acta Oceanologica Sinica, 2021, 40(12): 90-103. |
[22] | WANG Y Y, CHENG H, WANG C S. A new eyeless species of Nicon (Annelida: Nereididae) from the deep Northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2021, 40(12): 20-26. |
[23] |
WANG Y Y, CHENG H, WANG C S. Alentiana palinpoda, a new commensal polynoid species from a seamount in the Northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2021, 40(12): 12-19.
DOI |
[24] |
ZHOU Y D, ZHANG D S, LU B, et al. Description of a new branchiate scale-worm (Polychaeta: Polynoidae) from the hydrothermal vent on Southwest Indian Ocean Ridge[J]. Zootaxa, 2017, 4282(1): 123.
DOI URL |
[25] |
ZHANG D S, ZHOU Y D, WANG C S, et al. A new species of Ophryotrocha (Annelida, Eunicida, Dorvilleidae) from hydrothermal vents on the Southwest Indian Ridge[J]. ZooKeys, 2017, 687: 1-9.
DOI URL |
[26] | ZHOU Y D, WANG Y Y, ZHANG D S, et al. Branchinotogluma bipapillata n. sp., a new branchiate scale worm (Annelida: Polynoidae) from two hydrothermal fields on the Southwest Indian Ridge[J]. Zootaxa, 2018, 4482(3): 527-540. |
[27] |
ZHOU Y D, CHEN C, SUN Y N, et al. Amphisamytha (Annelida: Ampharetidae) from Indian Ocean hydrothermal vents: Biogeographic implications[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 154: 103148.
DOI URL |
[28] |
WANG Z, XU T, ZHANG Y J, et al. Molecular phylogenetic and morphological analyses of the ‘monospecific’ Hesiolyra (Annelida: Hesionidae) reveal two new species[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 166: 103401.
DOI URL |
[29] |
ZHOU Y D, CHEN C, ZHANG D S, et al. Delineating biogeographic regions in Indian Ocean deep-sea vents and implications for conservation[J]. Diversity and Distributions, 2022, 28(12): 2858-2870.
DOI URL |
[30] |
WATLING L, GUINOTTE J, CLARK M R, et al. A proposed biogeography of the deep ocean floor[J]. Progress in Oceanography, 2013, 111: 91-112.
DOI URL |
[31] |
何杰坤, 郜二虎, 余杰华, 等. 基于ArcGIS和R软件进行动物地理区划[J]. Bio-101, 2021: e1010641.DOI:10.21769/BioProtoc.1010641.
DOI |
HE J K, GAO E H, YU J H, et al. Delineating zoogeo-graphical regions using ArcGIS and R software[J]. Bio-101, 2021: e1010641.DOI:10.21769/BioProtoc.1010641.
DOI |
|
[32] |
邵广昭, 李瀚, 林永昌, 等. 海洋生物多样性信息资源[J]. 生物多样性, 2014, 22(3):253-263.
DOI |
SHAO G Z, LI H, LIN Y C, et al. A review of marine biodiversity information resources[J]. Biodiversity Science, 2014, 22(3): 253-263.
DOI |
|
[33] | BEAULIEU S E, SZAFRAŃSKI K M. InterRidge global database of active submarine hydrothermal vent fields Version 3.4[DB/OL]. Pangaea, 2020. https://doi.org/10.1594/PANGAEA.917894. |
[34] |
PANTE E, SIMON-BOUHET B. Marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R[J]. PLoS One, 2013, 8(9): e73051.
DOI URL |
[35] | WHITAKER D, CHRISTMAN M. Clustsig: Significant cluster analysis. R package version 1.1[DB/OL]. https://CRAN.R-project.org/package=clustsig, 2014. |
[36] | GEHLENBORG N. UpSetR: A more scalable alternative to venn and euler diagrams for visualizing intersecting Sets. R package version 1.4.0[DB/OL]. https://CRAN.R-project.org/package=UpSetR, 2019. |
[37] |
MORRONE J J. Parsimony analysis of endemicity (PAE) revisited[J]. Journal of Biogeography, 2014, 41(5): 842-854.
DOI URL |
[38] |
SCHLIEP K P. Phangorn: Phylogenetic analysis in R[J]. Bioinformatics, 2011, 27(4): 592-593.
DOI PMID |
[39] |
SALAZAR-VALLEJO S I, CARRERA-PARRA L F, MUIR A I, et al. Polychaete species (Annelida) described from the Philippine and China Seas[J]. Zootaxa, 2014, 3842(1): 1.
DOI URL |
[40] |
ALALYKINA I L. Polychaete composition from the abyssal plain adjacent to the Kuril-Kamchatka Trench with the description of a new species of Sphaerephesia (Polychaeta: Sphaerodoridae)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 111: 166-174.
DOI URL |
[41] |
OUG E, BAKKEN T, KONGSRUD J A, et al. Polychaetous annelids in the deep Nordic Seas: Strong bathymetric gradients, low diversity and underdeveloped taxonomy[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 137: 102-112.
DOI URL |
[42] |
FIEGE D, RAMEY P A, EBBE B. Diversity and distri-butional patterns of Polychaeta in the deep South Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(10): 1329-1344.
DOI URL |
[43] |
HAN Y R, ZHANG D S, WANG C S, et al. Out of the Pacific: A new alvinellid worm (Annelida: Terebellida) from the northern Indian Ocean hydrothermal vents[J]. Frontiers in Marine Science, 2021, 8: 669918.
DOI URL |
[44] |
PATERSON G L J, GLOVER A G, BARRIO FROJÁN C R S, et al. A census of abyssal polychaetes[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(19/20): 1739-1746.
DOI URL |
[45] |
EVANS J L, PECKETT F, HOWELL K L. Combined application of biophysical habitat mapping and systematic conservation planning to assess efficiency and representa-tiveness of the existing High Seas MPA network in the Northeast Atlantic[J]. ICES Journal of Marine Science, 2015, 72(5): 1483-1497.
DOI URL |
[46] |
MCCLAIN C R, REX M A. Toward a conceptual under-standing of β-diversity in the deep-sea benthos[J]. Annual Review of Ecology, Evolution, and Systematics, 2015, 46: 623-642.
DOI URL |
[47] |
RAMIREZ-LLODRA E, BRANDT A, DANOVARO R, et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem[J]. Biogeosciences, 2010, 7(9): 2851-2899.
DOI URL |
[48] |
COSTELLO M J, CHAUDHARY C. Marine biodiversity, biogeography, deep-sea gradients, and conservation[J]. Current Biology, 2017, 27(11): 511-527.
DOI PMID |
[49] | HILBIG B, BLAKE J A. Deep-sea polychaete communities in the northeast Pacific Ocean off the gulf of the Farallones, California[J]. Bulletin of Marine Science, 2006, 78: 243-269. |
[50] |
ETTER R J, GRASSLE J F. Patterns of species diversity in the deep sea as a function of sediment particle size diversity[J]. Nature, 1992, 360(6404): 576-578.
DOI |
[51] |
MCQUAID K A, ATTRILL M J, CLARK M R, et al. Using habitat classification to assess representativity of a protected area network in a large, data-poor area targeted for deep-sea mining[J]. Frontiers in Marine Science, 2020, 7: 558860.
DOI URL |
[1] | 王苑如, 崔鸿鹏, 李继东, 孙栋, 王春生, 杨娟. 西太平洋多金属结核区表层沉积物细菌群落结构及其对沉积扰动的响应[J]. 海洋学研究, 2021, 39(2): 21-32. |
[2] | 冯冠华, 李智刚, 冯迎宾, 梁洪光, 程阳锐, 吴东华. 多金属结核概念车浮游体的外形设计及阻力特性分析[J]. 海洋学研究, 2017, 35(1): 80-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||