长江口南汇潮滩的波浪特征及其影响因素

崔明慧, 涂俊彪, 孟令鹏, 郭兴杰, 苏妮, 范代读

海洋学研究 ›› 2023, Vol. 41 ›› Issue (2) : 28-44.

PDF(6284 KB)
PDF(6284 KB)
海洋学研究 ›› 2023, Vol. 41 ›› Issue (2) : 28-44. DOI: 10.3969/j.issn.1001-909X.2023.02.003
研究论文

长江口南汇潮滩的波浪特征及其影响因素

作者信息 +

Wave characteristics and their influencing factors on Nanhui tidal flats in the Changjiang Estuary

Author information +
文章历史 +

摘要

波浪是塑造开敞型潮滩动力地貌的重要因素,但目前对潮滩波浪特征研究仍较少。该文以长江口南汇潮滩为例,通过对固定平台声学多普勒流速仪(Acoustic Doppler Velocimeter,ADV)获得的流速和水压等高频数据进行反演,获得了波浪特征参数和波浪谱参数,进而分析了它们在潮周期内的变化规律和影响机制。研究表明,观测期间南汇潮滩3个站位波浪的常浪向和强浪向以SE向为主,由长周期涌浪占主导。3个站位的有效波高与水深均成正相关关系,但各站位在涨、落潮期间的拟合系数不同。波浪轨道流速受浅水效应和潮流流向的影响明显,如在涨潮初期达到最大,在转流时期出现谷值。落潮期间波浪频谱以双峰谱为主,明显受到潮汐水位和地形的综合影响,期间峰值能量不断衰减且逐渐分散,并伴随出现了峰频转移现象。

Abstract

Wave is an important factor to shape the dynamic geomorphology of the open tidal flat, but researches on tidal-flat wave characteristics are still limited. Taking Nanhui tidal flats in the Changjiang Estuary as an example, the wave characteristic parameters and wave spectrum parameters were obtained by inverting flow-velocity and water-pressure data from the Acoustic Doppler Velocimeters (ADVs) at some fixed platforms, and their changes over tidal cycles and associated influence mechanisms were discussed. The results show that both normal wave direction and prominent wave direction at three stations of Nanhui tidal flats are mainly southeast during the observation period, with long-period swells dominating. The effective wave height of the three stations is positively correlated with the water depth, but the fitting coefficients of each station are different over flood and ebb periods. Wave orbital velocities are obviously modulated by the shallow water effect and the flow directions, and their maximum values usually occur at the early flooding stage, while minimum values can be observed to occur during the current transition periods. The wave energy spectrum during ebb tides is featured by the bimodal pattern because of high influence by tidal levels and coastal topography, and the peak energy is continuously attenuated and gradually dispersed with the concurrent shift of peak frequencies.

关键词

南汇潮滩 / 波浪特征参数 / 波浪谱 / 风浪

Key words

Nanhui tidal flats / wave characteristic parameter / spectrum of waves / wind

引用本文

导出引用
崔明慧, 涂俊彪, 孟令鹏, . 长江口南汇潮滩的波浪特征及其影响因素[J]. 海洋学研究. 2023, 41(2): 28-44 https://doi.org/10.3969/j.issn.1001-909X.2023.02.003
CUI Minghui, TU Junbiao, MENG Lingpeng, et al. Wave characteristics and their influencing factors on Nanhui tidal flats in the Changjiang Estuary[J]. Journal of Marine Sciences. 2023, 41(2): 28-44 https://doi.org/10.3969/j.issn.1001-909X.2023.02.003
中图分类号: P731.22   

参考文献

[1]
XU X G, CHEN Z X, FENG Z. From natural driving to artificial intervention: Changes of the Yellow River Estuary and delta development[J]. Ocean & Coastal Management, 2019, 174: 63-70.
[2]
ZHU Q, YANG S L, MA Y X. Intra-tidal sedimentary processes associated with combined wave-current action on an exposed, erosional mudflat, southeastern Yangtze River Delta, China[J]. Marine Geology, 2014, 347: 95-106.
[3]
FAN D D, GUO Y X, WANG P, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: With an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517-538.
[4]
陈子燊, 李志强, 李志龙, 等. 海滩碎波带波性质的统计对比分析[J]. 中山大学学报:自然科学版, 2002, 41(6):86-90.
CHEN Z S, LI Z Q, LI Z L, et al. Statistical analysis and comparison on wave properties in a beach-surf zone[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(6): 86-90.
[5]
王科华, 任赵飞, 周智鹏, 等. 工程海域波浪特征分析方法比较[J]. 海洋工程, 2022, 40(3):149-158.
WANG K H, REN Z F, ZHOU Z P, et al. Comparison of wave characteristics analysis methods for project site[J]. The Ocean Engineering, 2022, 40(3):149-158.
[6]
VANDEVER J P, SIEGEL E M, BRUBAKER J M, et al. Influence of spectral width on wave height parameter estimates in coastal environments[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2008, 134(3): 187-194.
[7]
AMRUTHA M M, SANIL KUMAR V, SHARMA S, et al. Characteristics of shallow water waves off the central west coast of India before, during and after the onset of the Indian summer monsoon[J]. Ocean Engineering, 2015, 107: 259-270.
[8]
KUMAR V S, JOHNSON G, DORA G U, et al. Variations in nearshore waves along Karnataka, west coast of India[J]. Journal of Earth System Science, 2012, 121(2): 393-403.
[9]
SANIL KUMAR V, SINGH J, PEDNEKAR P, et al. Waves in the nearshore waters of northern Arabian Sea during the summer monsoon[J]. Ocean Engineering, 2011, 38(2/3): 382-388.
[10]
AMRUTHA M M, SANIL KUMAR V. Characteristics of high monsoon wind-waves observed at multiple stations in the eastern Arabian Sea[J]. Ocean Science Discussions, 2017: 1-30. https://doi.org/10.5194/05-2017-84.
[11]
ZHOU Y, YE Q, SHI W Y, et al. Wave characteristics in the nearshore waters of Sanmen Bay[J]. Applied Ocean Research, 2020, 101: 102236.
[12]
YANG B, XIE H W, DING J, et al. Wave characteristics in northeast coastal waters of Zhoushan Island under the influence of winter monsoon[J]. IOP Conference Series: Earth and Environmental Science, 2021, 787(1): 012134.
Waves at 12 m water depth in the northeast coastal waters of Zhoushan Island were measured from November 2014 to February 2015, and the characteristics were described. The study showed that the significant wave height varied from 0.08 to 1.35 m with the average of 0.36 m during the winter monsoon period, but the maximum of the maximum wave height is close to the maximum value of some typhoon waves of the same place. The monthly main wave direction varied from ENE to N to NE to ENE. Relatively high correlations exist between some wave parameters and relationships between them were identified. Most of the waves have a bimodal spectrum and the influence of monsoon on waves is intermittent.
[13]
祁祥礼, 郑向阳, 谌业良. 渤海湾中部波浪特征分析[J]. 水道港口, 2018, 39(3):288-293.
QI X L, ZHENG X Y, SHEN Y L. Analysis of wave characteristic in the middle part of the Bohai Bay[J]. Journal of Waterway and Harbor, 2018, 39(3): 288-293.
[14]
陈燕萍, 杨世伦, 史本伟, 等. 潮滩上波高的时空变化及其影响因素:以长江三角洲海岸为例[J]. 海洋科学进展, 2012, 30(3):317-327.
CHEN Y P, YANG S L, SHI B W, et al. Temporal and spatial variations in wave height over intertidal mudflats and the influencing factors: A case study from the Yangtze River Delta[J]. Advances in Marine Science, 2012, 30(3): 317-327.
[15]
赵建春, 李九发, 李占海, 等. 长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J]. 海洋学报, 2009, 31(4):103-111.
ZHAO J C, LI J F, LI Z H, et al. Researches on characteristics and dynamic mechanism of short-term scouring and silting changes of the tidal flat on Nanhui Spit in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2009, 31(4): 103-111.
[16]
曹颖, 朱军政. 长江口南汇东滩水动力条件变化的数值预测[J]. 水科学进展, 2005, 16(4):581-585.
CAO Y, ZHU J Z. Numeric prediction of hydrodynamic condition change at Nanhui east shore of the Yangtze River Estuary[J]. Advances in Water Science, 2005, 16(4): 581-585.
[17]
火苗, 范代读, 陆琦, 等. 长江口南汇边滩冲淤变化规律与机制[J]. 海洋学报, 2010, 32(5):41-51.
HUO M, FAN D D, LU Q, et al. Decadal variations in the erosion/deposition pattern of Nanhui muddy bank and their mechanism in the Changjiang Delta[J]. Acta Oceanologica Sinica, 2010, 32(5): 41-51.
[18]
李九发, 戴志军, 刘新成, 等. 长江河口南汇嘴潮滩圈围工程前后水沙运动和冲淤演变研究[J]. 泥沙研究, 2010(3):31-37.
LI J F, DAI Z J, LIU X C, et al. Research on the movement of water and suspended sediment and sedimentation in Nanhui spit of the Yangtze Estuary before and after the construction of reclamation projects on the tidal flat[J]. Journal of Sediment Research, 2010(3): 31-37.
[19]
ZHOU Z, WU Y M, FAN D D, et al. Sediment sorting and bedding dynamics of tidal flat wetlands: Modeling the signature of storms[J]. Journal of Hydrology, 2022, 610: 127913.
[20]
戴志军, 陈建勇, 路海亭. 长江河口南汇东滩与南滩沉积物空间相关特征分析[J]. 海洋湖沼通报, 2008(2):46-52.
DAI Z J, CHEN J Y, LU H T. Analysis on the spatial distribution of deposition fields between the east bank and the south bank, in the Changjiang River Estuary[J]. Tran-sactions of Oceanology and Limnology, 2008(2): 46-52.
[21]
左书华, 李蓓, 杨华. 长江口南汇嘴海域表层悬浮泥沙分布和运动遥感分析[J]. 水道港口, 2010, 31(5):384-389.
ZUO S H, LI B, YANG H. Remote sensing analysis on distribution and movement of surface suspended sediment in the Nanhuizui tidal flat, Yangtze Estuary[J]. Journal of Waterway and Harbor, 2010, 31(5): 384-389.
[22]
冯凌旋, 李占海, 李九发, 等. 基于机制分解法长江口南汇潮滩悬移质泥沙通量研究[J]. 长江流域资源与环境, 2011, 20(8):944-950.
FENG L X, LI Z H, LI J F, et al. Fluxes of suspended sediment in the Nanhui tidal flat of the Yangtze Estuary with mechanism decomposition method[J]. Resources and Environment in the Yangtze Basin, 2011, 20(8): 944-950.
[23]
YANG S L, LI H, YSEBAERT T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657-671.
[24]
GORING D G, NIKORA V I. Despiking acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2002, 128(1): 117-126.
[25]
佘小建, 崔峥, 徐啸. 上海临港工业区芦潮港海域水文泥沙分析[J]. 水利水运工程学报, 2009(1):76-80.
SHE X J, CUI Z, XU X. Analysis of hydrological and sediment field data in Luchaogang Sea area of Shanghai[J]. Hydro-Science and Engineering, 2009(1): 76-80.
[26]
GORDON L, LOHRMANN A. Near-shore Doppler Current meter wave spectra[C]//Ocean wave measurement and analysis (2001). San Francisco, USA: American Society of Civil Engineers, 2002.
[27]
鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析[J]. 海洋学报:中文版, 2012, 34(5):39-49.
LU Y Z, WU J X, LIU H. An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer[J]. Acta Oceanologica Sinica, 2012, 34(5): 39-49.
[28]
芦军, 范代读, 涂俊彪, 等. 潮滩上应用ADV进行波浪观测与特征参数计算[J]. 海洋通报, 2016, 35(5):523-531.
LU J, FAN D D, TU J B, et al. Application of ADV in the tidal flat to observe wave processes and calculate their characteristic parameters[J]. Marine Science Bulletin, 2016, 35(5):523-531.
[29]
MACVEAN L J, LACY J R. Interactions between waves, sediment, and turbulence on a shallow estuarine mudflat[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 1534-1553.
[30]
WIBERG P L, SHERWOOD C R. Calculating wave-generated bottom orbital velocities from surface-wave parameters[J]. Computers & Geosciences, 2008, 34(10): 1243-1262.
[31]
PORTILLA J, OCAMPO-TORRES F J, MONBALIU J. Spectral partitioning and identification of wind sea and swell[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(1): 107-122.
In this paper, different partitioning techniques and methods to identify wind sea and swell are investigated, addressing both 1D and 2D schemes. Current partitioning techniques depend largely on arbitrary parameterizations to assess if wave systems are significant or spurious. This makes the implementation of automated procedures difficult, if not impossible, to calibrate. To avoid this limitation, for the 2D spectrum, the use of a digital filter is proposed to help the algorithm keep the important features of the spectrum and disregard the noise. For the 1D spectrum, a mechanism oriented to neglect the most likely spurious partitions was found sufficient for detecting relevant spectral features. Regarding the identification of wind sea and swell, it was found that customarily used methods sometimes largely differ from one another. Evidently, methods using 2D spectra and wind information are the most consistent. In reference to 1D identification methods, attention is given to two widely used methods, namely, the steepness method used operationally at the National Data Buoy Center (NDBC) and the Pierson–Moskowitz (PM) spectrum peak method. It was found that the steepness method systematically overestimates swell, while the PM method is more consistent, although it tends to underestimate swell. Consistent results were obtained looking at the ratio between the energy at the spectral peak of a partition and the energy at the peak of a PM spectrum with the same peak frequency. It is found that the use of partitioning gives more consistent identification results using both 1D and 2D spectra.
[32]
李志强, 陈子燊, 李志龙, 等. 粤东后江湾近岸波浪要素变化特征分析[C]// 中国海洋工程学会.第十二届中国海岸工程学术讨论会论文集. 北京: 海洋出版社, 2005:5.
LI Z Q, CHEN Z S, LI Z L, et al. Analysis of the variation characteristics of nearshore wave elements in Houjiang Bay, eastern Guangdong[C]// China Ocean Engineering Society. Proceedings of the 12th China Coastal Engineering Sympo-sium. Beijing: China Ocean Press, 2005: 5.
[33]
李志强, 陈子燊, 李志龙. 近岸带波浪传播过程中波性质的统计对比分析[J]. 广东海洋大学学报, 2010, 30(4):43-47.
LI Z Q, CHEN Z S, LI Z L. Statistical analysis and comparison on wave characteristics during wave propagating in nearshore zone[J]. Journal of Zhanjiang Ocean Univer-sity, 2010, 30(4): 43-47.
[34]
陈子燊, 李志强, 戴志军, 等. 近岸带三组成波耦合作用的观测与分析[J]. 热带海洋学报, 2003, 22(6):46-53.
CHEN Z S, LI Z Q, DAI Z J, et al. Observations and analysis for triad wave coupling in nearshore waters[J]. Journal of Tropical Oceanography, 2003, 22(6): 46-53.
[35]
任剑波, 何青, 沈健, 等. 远区台风 “三巴” 对长江口波浪动力场的作用机制[J]. 海洋科学, 2020, 44(5):12-23.
REN J B, HE Q, SHEN J, et al. The effect mechanism of a remote typhoon “Sanba” on wave dynamics in the Changjiang Estuary[J]. Marine Sciences, 2020, 44(5): 12-23.

基金

上海市教委科研创新计划自然科学重大项目(2021E00093)
中央高校基本科研业务费专项资金资助项目(ZD-21-202101)

编辑: 杨义菊
PDF(6284 KB)

Accesses

Citation

Detail

段落导航
相关文章

/