海洋学研究 ›› 2023, Vol. 41 ›› Issue (2): 28-44.DOI: 10.3969/j.issn.1001-909X.2023.02.003
崔明慧1(), 涂俊彪1, 孟令鹏1, 郭兴杰1,2, 苏妮1, 范代读1,*()
收稿日期:
2022-12-20
修回日期:
2023-02-02
出版日期:
2023-06-15
发布日期:
2023-07-27
通讯作者:
*范代读(1972—),男,教授,主要从事海洋沉积学方面的研究,E-mail:作者简介:
崔明慧(1998—),女,山东省东营市人,主要从事海洋动力学方面的研究,E-mail:Floria_cmh@tongji.edu.cn。
基金资助:
CUI Minghui1(), TU Junbiao1, MENG Lingpeng1, GUO Xingjie1,2, SU Ni1, FAN Daidu1,*()
Received:
2022-12-20
Revised:
2023-02-02
Online:
2023-06-15
Published:
2023-07-27
摘要:
波浪是塑造开敞型潮滩动力地貌的重要因素,但目前对潮滩波浪特征研究仍较少。该文以长江口南汇潮滩为例,通过对固定平台声学多普勒流速仪(Acoustic Doppler Velocimeter,ADV)获得的流速和水压等高频数据进行反演,获得了波浪特征参数和波浪谱参数,进而分析了它们在潮周期内的变化规律和影响机制。研究表明,观测期间南汇潮滩3个站位波浪的常浪向和强浪向以SE向为主,由长周期涌浪占主导。3个站位的有效波高与水深均成正相关关系,但各站位在涨、落潮期间的拟合系数不同。波浪轨道流速受浅水效应和潮流流向的影响明显,如在涨潮初期达到最大,在转流时期出现谷值。落潮期间波浪频谱以双峰谱为主,明显受到潮汐水位和地形的综合影响,期间峰值能量不断衰减且逐渐分散,并伴随出现了峰频转移现象。
中图分类号:
崔明慧, 涂俊彪, 孟令鹏, 郭兴杰, 苏妮, 范代读. 长江口南汇潮滩的波浪特征及其影响因素[J]. 海洋学研究, 2023, 41(2): 28-44.
CUI Minghui, TU Junbiao, MENG Lingpeng, GUO Xingjie, SU Ni, FAN Daidu. Wave characteristics and their influencing factors on Nanhui tidal flats in the Changjiang Estuary[J]. Journal of Marine Sciences, 2023, 41(2): 28-44.
图1 长江口南汇潮滩地理概况及站位布设(a),3个观测站位所在断面的滩面高程变化(b) (图b中3个星号表示3个站位的位置。)
Fig.1 Geographical overview and layout of stations at Nanhui tidal flats in the Changjiang Estuary (a) and elevation changes along the profiles where three stations are located (b) (The three asterisks in the fig.b indicate the positions of the three stations.)
站位 | 经纬度 | 仪器 | 采样频率 /Hz | 流速探头距 滩面距离/m | 潮周期 | ||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||
S1 | 121°59'14.50″E, 30°53'41.32″N | ADV9658 | 32 | 0.28 | 9月5日19:00— 9月6日03:50 | 9月6日07:20—15:50 | 9月6日19:30— 9月7日04:20 |
S2 | 121°55'45.44″E, 30°51'36.40″N | ADV8160 | 32 | 0.20 | 9月5日18:40— 9月6日04:50 | 9月6日07:00—16:40 | 9月6日19:20— 9月7日05:10 |
S3 | 121°57'14.15″E, 30°59'08.59″N | ADV8173 | 32 | 0.52 | 9月5日19:10— 9月6日04:10 | 9月6日07:40—16:10 | 9月6日20:10— 9月7日05:00 |
表1 3个观测站位置、仪器设置及有效观测时段
Tab.1 Locations of three stations, instrumentation and their valid observation periods
站位 | 经纬度 | 仪器 | 采样频率 /Hz | 流速探头距 滩面距离/m | 潮周期 | ||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||
S1 | 121°59'14.50″E, 30°53'41.32″N | ADV9658 | 32 | 0.28 | 9月5日19:00— 9月6日03:50 | 9月6日07:20—15:50 | 9月6日19:30— 9月7日04:20 |
S2 | 121°55'45.44″E, 30°51'36.40″N | ADV8160 | 32 | 0.20 | 9月5日18:40— 9月6日04:50 | 9月6日07:00—16:40 | 9月6日19:20— 9月7日05:10 |
S3 | 121°57'14.15″E, 30°59'08.59″N | ADV8173 | 32 | 0.52 | 9月5日19:10— 9月6日04:10 | 9月6日07:40—16:10 | 9月6日20:10— 9月7日05:00 |
站位 | 潮时 | 平均水深/m | 平均流速/(m·s-1) | 平均流向/(°) | 波传播方向/(°) | 平均历时/h |
---|---|---|---|---|---|---|
S1 | 涨潮 | 2.69 | 0.44 | 260.09 | 285.24 | 3.61 |
落潮 | 2.63 | 0.49 | 57.04 | 302.21 | 5.11 | |
全潮 | 2.65 | 0.47 | 158.57 | 295.08 | 8.72 | |
S2 | 涨潮 | 2.93 | 0.20 | 247.56 | 260.11 | 4.22 |
落潮 | 2.50 | 0.18 | 79.89 | 280.34 | 5.39 | |
全潮 | 2.71 | 0.17 | 163.73 | 270.23 | 9.61 | |
S3 | 涨潮 | 2.97 | 0.38 | 309.77 | 318.10 | 4.00 |
落潮 | 2.48 | 0.25 | 128.85 | 203.24 | 4.78 | |
全潮 | 2.70 | 0.31 | 203.24 | 275.78 | 8.78 |
表2 3个站位不同潮时重要潮汐动力参数统计值
Tab.2 Statistics of key tidal hydrodynamic parameters over varied tidal phases at the three stations
站位 | 潮时 | 平均水深/m | 平均流速/(m·s-1) | 平均流向/(°) | 波传播方向/(°) | 平均历时/h |
---|---|---|---|---|---|---|
S1 | 涨潮 | 2.69 | 0.44 | 260.09 | 285.24 | 3.61 |
落潮 | 2.63 | 0.49 | 57.04 | 302.21 | 5.11 | |
全潮 | 2.65 | 0.47 | 158.57 | 295.08 | 8.72 | |
S2 | 涨潮 | 2.93 | 0.20 | 247.56 | 260.11 | 4.22 |
落潮 | 2.50 | 0.18 | 79.89 | 280.34 | 5.39 | |
全潮 | 2.71 | 0.17 | 163.73 | 270.23 | 9.61 | |
S3 | 涨潮 | 2.97 | 0.38 | 309.77 | 318.10 | 4.00 |
落潮 | 2.48 | 0.25 | 128.85 | 203.24 | 4.78 | |
全潮 | 2.70 | 0.31 | 203.24 | 275.78 | 8.78 |
站点 | 潮周期 | 潮时 | 有效波高/m | 平均周期/s | 平均跨零周期/s | 波轨流速/(m·s-1) |
---|---|---|---|---|---|---|
S1 | T1 | 全潮范围 | 0.08~0.52 | 3.08~5.73 | 2.80~4.90 | 0.10~0.26 |
涨潮平均 | 0.40 | 3.97 | 3.56 | 0.20 | ||
落潮平均 | 0.28 | 4.20 | 3.66 | 0.14 | ||
全潮平均 | 0.34 | 4.11 | 3.62 | 0.16 | ||
T2 | 全潮范围 | 0.06~0.56 | 3.04~4.90 | 2.90~4.46 | 0.08~0.22 | |
涨潮平均 | 0.43 | 3.28 | 3.11 | 0.19 | ||
落潮平均 | 0.28 | 4.39 | 3.85 | 0.14 | ||
全潮平均 | 0.36 | 3.94 | 3.54 | 0.15 | ||
T3 | 全潮范围 | 0.04~0.51 | 3.37~5.60 | 3.13~4.90 | 0.06~0.24 | |
涨潮平均 | 0.40 | 3.62 | 3.35 | 0.19 | ||
落潮平均 | 0.22 | 4.42 | 3.89 | 0.11 | ||
全潮平均 | 0.31 | 4.09 | 3.67 | 0.15 | ||
S2 | T1 | 全潮范围 | 0.08~0.41 | 2.62~6.04 | 2.50~5.04 | 0.07~0.25 |
涨潮平均 | 0.31 | 3.30 | 3.05 | 0.15 | ||
落潮平均 | 0.14 | 4.54 | 3.95 | 0.10 | ||
全潮平均 | 0.23 | 3.92 | 3.50 | 0.13 | ||
T2 | 全潮范围 | 0.09~0.50 | 2.72~5.41 | 2.62~4.85 | 0.09~0.23 | |
涨潮平均 | 0.33 | 3.25 | 3.08 | 0.15 | ||
落潮平均 | 0.18 | 4.59 | 4.16 | 0.12 | ||
全潮平均 | 0.26 | 3.92 | 3.62 | 0.15 | ||
T3 | 全潮范围 | 0.06~0.44 | 2.69~5.43 | 2.57~4.75 | 0.06~0.18 | |
涨潮平均 | 0.31 | 3.24 | 3.07 | 0.14 | ||
落潮平均 | 0.15 | 4.16 | 3.70 | 0.09 | ||
全潮平均 | 0.23 | 3.92 | 3.39 | 0.12 | ||
S3 | T1 | 全潮范围 | 0.09~0.47 | 2.61~4.09 | 2.46~3.41 | 0.06~0.13 |
涨潮平均 | 0.34 | 2.51 | 3.13 | 0.10 | ||
落潮平均 | 0.30 | 3.92 | 2.73 | 0.09 | ||
全潮平均 | 0.29 | 3.14 | 2.91 | 0.10 | ||
T2 | 全潮范围 | 0.06~0.50 | 2.50~3.54 | 2.43~3.31 | 0.04~0.13 | |
涨潮平均 | 0.41 | 3.07 | 2.93 | 0.11 | ||
落潮平均 | 0.20 | 2.98 | 2.79 | 0.08 | ||
全潮平均 | 0.30 | 3.03 | 2.86 | 0.09 | ||
T3 | 全潮范围 | 0.05~0.48 | 2.53~4.04 | 2.47~3.52 | 0.03~0.13 | |
涨潮平均 | 0.37 | 3.17 | 2.96 | 0.10 | ||
落潮平均 | 0.16 | 3.32 | 2.98 | 0.06 | ||
全潮范围 | 0.26 | 3.25 | 2.97 | 0.08 |
表3 3个站位不同潮时重要波浪参数统计值
Tab.3 Statistic of key wave parameters over different tidal phases at the three stations
站点 | 潮周期 | 潮时 | 有效波高/m | 平均周期/s | 平均跨零周期/s | 波轨流速/(m·s-1) |
---|---|---|---|---|---|---|
S1 | T1 | 全潮范围 | 0.08~0.52 | 3.08~5.73 | 2.80~4.90 | 0.10~0.26 |
涨潮平均 | 0.40 | 3.97 | 3.56 | 0.20 | ||
落潮平均 | 0.28 | 4.20 | 3.66 | 0.14 | ||
全潮平均 | 0.34 | 4.11 | 3.62 | 0.16 | ||
T2 | 全潮范围 | 0.06~0.56 | 3.04~4.90 | 2.90~4.46 | 0.08~0.22 | |
涨潮平均 | 0.43 | 3.28 | 3.11 | 0.19 | ||
落潮平均 | 0.28 | 4.39 | 3.85 | 0.14 | ||
全潮平均 | 0.36 | 3.94 | 3.54 | 0.15 | ||
T3 | 全潮范围 | 0.04~0.51 | 3.37~5.60 | 3.13~4.90 | 0.06~0.24 | |
涨潮平均 | 0.40 | 3.62 | 3.35 | 0.19 | ||
落潮平均 | 0.22 | 4.42 | 3.89 | 0.11 | ||
全潮平均 | 0.31 | 4.09 | 3.67 | 0.15 | ||
S2 | T1 | 全潮范围 | 0.08~0.41 | 2.62~6.04 | 2.50~5.04 | 0.07~0.25 |
涨潮平均 | 0.31 | 3.30 | 3.05 | 0.15 | ||
落潮平均 | 0.14 | 4.54 | 3.95 | 0.10 | ||
全潮平均 | 0.23 | 3.92 | 3.50 | 0.13 | ||
T2 | 全潮范围 | 0.09~0.50 | 2.72~5.41 | 2.62~4.85 | 0.09~0.23 | |
涨潮平均 | 0.33 | 3.25 | 3.08 | 0.15 | ||
落潮平均 | 0.18 | 4.59 | 4.16 | 0.12 | ||
全潮平均 | 0.26 | 3.92 | 3.62 | 0.15 | ||
T3 | 全潮范围 | 0.06~0.44 | 2.69~5.43 | 2.57~4.75 | 0.06~0.18 | |
涨潮平均 | 0.31 | 3.24 | 3.07 | 0.14 | ||
落潮平均 | 0.15 | 4.16 | 3.70 | 0.09 | ||
全潮平均 | 0.23 | 3.92 | 3.39 | 0.12 | ||
S3 | T1 | 全潮范围 | 0.09~0.47 | 2.61~4.09 | 2.46~3.41 | 0.06~0.13 |
涨潮平均 | 0.34 | 2.51 | 3.13 | 0.10 | ||
落潮平均 | 0.30 | 3.92 | 2.73 | 0.09 | ||
全潮平均 | 0.29 | 3.14 | 2.91 | 0.10 | ||
T2 | 全潮范围 | 0.06~0.50 | 2.50~3.54 | 2.43~3.31 | 0.04~0.13 | |
涨潮平均 | 0.41 | 3.07 | 2.93 | 0.11 | ||
落潮平均 | 0.20 | 2.98 | 2.79 | 0.08 | ||
全潮平均 | 0.30 | 3.03 | 2.86 | 0.09 | ||
T3 | 全潮范围 | 0.05~0.48 | 2.53~4.04 | 2.47~3.52 | 0.03~0.13 | |
涨潮平均 | 0.37 | 3.17 | 2.96 | 0.10 | ||
落潮平均 | 0.16 | 3.32 | 2.98 | 0.06 | ||
全潮范围 | 0.26 | 3.25 | 2.97 | 0.08 |
站位 | 潮周期 | 峰值周期/s | 最大谱密度/(m2·s) | 谱尖度参数 | 谱宽度参数 |
---|---|---|---|---|---|
S1 | T1 | 8.70 | 0.220 | 1.83 | 0.81 |
T2 | 6.25 | 0.072 | 1.36 | 0.66 | |
T3 | 6.67 | 0.098 | 1.46 | 0.68 | |
S2 | T1 | 2.01 | 0.017 | 4.82 | 0.43 |
T2 | 2.01 | 0.069 | 2.18 | 0.47 | |
T3 | 6.74 | 0.032 | 3.96 | 0.48 | |
S3 | T1 | 2.68 | 0.144 | 4.81 | 0.46 |
T2 | 3.08 | 0.101 | 2.45 | 0.43 | |
T3 | 6.06 | 0.086 | 1.70 | 0.58 |
表4 3个站位波高最大时刻的波谱参数
Tab.4 Spectral parameters at the moment of maximum wave height at the three stations
站位 | 潮周期 | 峰值周期/s | 最大谱密度/(m2·s) | 谱尖度参数 | 谱宽度参数 |
---|---|---|---|---|---|
S1 | T1 | 8.70 | 0.220 | 1.83 | 0.81 |
T2 | 6.25 | 0.072 | 1.36 | 0.66 | |
T3 | 6.67 | 0.098 | 1.46 | 0.68 | |
S2 | T1 | 2.01 | 0.017 | 4.82 | 0.43 |
T2 | 2.01 | 0.069 | 2.18 | 0.47 | |
T3 | 6.74 | 0.032 | 3.96 | 0.48 | |
S3 | T1 | 2.68 | 0.144 | 4.81 | 0.46 |
T2 | 3.08 | 0.101 | 2.45 | 0.43 | |
T3 | 6.06 | 0.086 | 1.70 | 0.58 |
站位 | 潮周期 | 谱峰频率/Hz | 谱峰值能量/(m2·s) | PM谱峰值能量/(m2·s) | 比值 | 波浪成分 |
---|---|---|---|---|---|---|
S1 | T1 | 0.12/0.22① | 0.220/0.015 | 7.125/0.162 | <1/<1 | 涌浪 |
T2 | 0.16/0.31 | 0.072/0.025 | 1.367/0.049 | <1/<1 | 涌浪 | |
T3 | 0.15/0.34 | 0.098/0.022 | 1.887/0.003 | <1/>1 | 涌浪/风浪 | |
S2 | T1 | 0.27/0.35 | 0.011/0.017 | 0.103/0.026 | <1/<1 | 涌浪 |
T2 | 0.14/0.28 | 0.015/0.069 | 2.369/0.081 | <1/<1 | 涌浪 | |
T3 | 0.16/0.31 | 0.032/0.023 | 1.300/0.049 | <1/<1 | 涌浪 | |
S3 | T1 | 0.11/0.38 | 0.004/0.144 | 10.379/0.020 | <1/>1 | 涌浪/风浪 |
T2 | 0.16/0.33 | 0.024/0.091 | 1.518/0.038 | <1/>1 | 涌浪/风浪 | |
T3 | 0.16/0.39 | 0.086/0.045 | 1.172/0.016 | <1/>1 | 涌浪/风浪 |
表5 谱峰值能量法分析的3个站位波浪类型
Tab.5 Employing wave energy spectrum statistics to discriminate wave types at the three stations
站位 | 潮周期 | 谱峰频率/Hz | 谱峰值能量/(m2·s) | PM谱峰值能量/(m2·s) | 比值 | 波浪成分 |
---|---|---|---|---|---|---|
S1 | T1 | 0.12/0.22① | 0.220/0.015 | 7.125/0.162 | <1/<1 | 涌浪 |
T2 | 0.16/0.31 | 0.072/0.025 | 1.367/0.049 | <1/<1 | 涌浪 | |
T3 | 0.15/0.34 | 0.098/0.022 | 1.887/0.003 | <1/>1 | 涌浪/风浪 | |
S2 | T1 | 0.27/0.35 | 0.011/0.017 | 0.103/0.026 | <1/<1 | 涌浪 |
T2 | 0.14/0.28 | 0.015/0.069 | 2.369/0.081 | <1/<1 | 涌浪 | |
T3 | 0.16/0.31 | 0.032/0.023 | 1.300/0.049 | <1/<1 | 涌浪 | |
S3 | T1 | 0.11/0.38 | 0.004/0.144 | 10.379/0.020 | <1/>1 | 涌浪/风浪 |
T2 | 0.16/0.33 | 0.024/0.091 | 1.518/0.038 | <1/>1 | 涌浪/风浪 | |
T3 | 0.16/0.39 | 0.086/0.045 | 1.172/0.016 | <1/>1 | 涌浪/风浪 |
[1] | XU X G, CHEN Z X, FENG Z. From natural driving to artificial intervention: Changes of the Yellow River Estuary and delta development[J]. Ocean & Coastal Management, 2019, 174: 63-70. |
[2] |
ZHU Q, YANG S L, MA Y X. Intra-tidal sedimentary processes associated with combined wave-current action on an exposed, erosional mudflat, southeastern Yangtze River Delta, China[J]. Marine Geology, 2014, 347: 95-106.
DOI URL |
[3] |
FAN D D, GUO Y X, WANG P, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: With an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517-538.
DOI URL |
[4] | 陈子燊, 李志强, 李志龙, 等. 海滩碎波带波性质的统计对比分析[J]. 中山大学学报:自然科学版, 2002, 41(6):86-90. |
CHEN Z S, LI Z Q, LI Z L, et al. Statistical analysis and comparison on wave properties in a beach-surf zone[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(6): 86-90. | |
[5] | 王科华, 任赵飞, 周智鹏, 等. 工程海域波浪特征分析方法比较[J]. 海洋工程, 2022, 40(3):149-158. |
WANG K H, REN Z F, ZHOU Z P, et al. Comparison of wave characteristics analysis methods for project site[J]. The Ocean Engineering, 2022, 40(3):149-158. | |
[6] |
VANDEVER J P, SIEGEL E M, BRUBAKER J M, et al. Influence of spectral width on wave height parameter estimates in coastal environments[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2008, 134(3): 187-194.
DOI URL |
[7] |
AMRUTHA M M, SANIL KUMAR V, SHARMA S, et al. Characteristics of shallow water waves off the central west coast of India before, during and after the onset of the Indian summer monsoon[J]. Ocean Engineering, 2015, 107: 259-270.
DOI URL |
[8] |
KUMAR V S, JOHNSON G, DORA G U, et al. Variations in nearshore waves along Karnataka, west coast of India[J]. Journal of Earth System Science, 2012, 121(2): 393-403.
DOI URL |
[9] |
SANIL KUMAR V, SINGH J, PEDNEKAR P, et al. Waves in the nearshore waters of northern Arabian Sea during the summer monsoon[J]. Ocean Engineering, 2011, 38(2/3): 382-388.
DOI URL |
[10] | AMRUTHA M M, SANIL KUMAR V. Characteristics of high monsoon wind-waves observed at multiple stations in the eastern Arabian Sea[J]. Ocean Science Discussions, 2017: 1-30. https://doi.org/10.5194/05-2017-84. |
[11] |
ZHOU Y, YE Q, SHI W Y, et al. Wave characteristics in the nearshore waters of Sanmen Bay[J]. Applied Ocean Research, 2020, 101: 102236.
DOI URL |
[12] |
YANG B, XIE H W, DING J, et al. Wave characteristics in northeast coastal waters of Zhoushan Island under the influence of winter monsoon[J]. IOP Conference Series: Earth and Environmental Science, 2021, 787(1): 012134.
DOI |
[13] | 祁祥礼, 郑向阳, 谌业良. 渤海湾中部波浪特征分析[J]. 水道港口, 2018, 39(3):288-293. |
QI X L, ZHENG X Y, SHEN Y L. Analysis of wave characteristic in the middle part of the Bohai Bay[J]. Journal of Waterway and Harbor, 2018, 39(3): 288-293. | |
[14] | 陈燕萍, 杨世伦, 史本伟, 等. 潮滩上波高的时空变化及其影响因素:以长江三角洲海岸为例[J]. 海洋科学进展, 2012, 30(3):317-327. |
CHEN Y P, YANG S L, SHI B W, et al. Temporal and spatial variations in wave height over intertidal mudflats and the influencing factors: A case study from the Yangtze River Delta[J]. Advances in Marine Science, 2012, 30(3): 317-327. | |
[15] | 赵建春, 李九发, 李占海, 等. 长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J]. 海洋学报, 2009, 31(4):103-111. |
ZHAO J C, LI J F, LI Z H, et al. Researches on characteristics and dynamic mechanism of short-term scouring and silting changes of the tidal flat on Nanhui Spit in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2009, 31(4): 103-111. | |
[16] | 曹颖, 朱军政. 长江口南汇东滩水动力条件变化的数值预测[J]. 水科学进展, 2005, 16(4):581-585. |
CAO Y, ZHU J Z. Numeric prediction of hydrodynamic condition change at Nanhui east shore of the Yangtze River Estuary[J]. Advances in Water Science, 2005, 16(4): 581-585. | |
[17] | 火苗, 范代读, 陆琦, 等. 长江口南汇边滩冲淤变化规律与机制[J]. 海洋学报, 2010, 32(5):41-51. |
HUO M, FAN D D, LU Q, et al. Decadal variations in the erosion/deposition pattern of Nanhui muddy bank and their mechanism in the Changjiang Delta[J]. Acta Oceanologica Sinica, 2010, 32(5): 41-51. | |
[18] | 李九发, 戴志军, 刘新成, 等. 长江河口南汇嘴潮滩圈围工程前后水沙运动和冲淤演变研究[J]. 泥沙研究, 2010(3):31-37. |
LI J F, DAI Z J, LIU X C, et al. Research on the movement of water and suspended sediment and sedimentation in Nanhui spit of the Yangtze Estuary before and after the construction of reclamation projects on the tidal flat[J]. Journal of Sediment Research, 2010(3): 31-37. | |
[19] |
ZHOU Z, WU Y M, FAN D D, et al. Sediment sorting and bedding dynamics of tidal flat wetlands: Modeling the signature of storms[J]. Journal of Hydrology, 2022, 610: 127913.
DOI URL |
[20] | 戴志军, 陈建勇, 路海亭. 长江河口南汇东滩与南滩沉积物空间相关特征分析[J]. 海洋湖沼通报, 2008(2):46-52. |
DAI Z J, CHEN J Y, LU H T. Analysis on the spatial distribution of deposition fields between the east bank and the south bank, in the Changjiang River Estuary[J]. Tran-sactions of Oceanology and Limnology, 2008(2): 46-52. | |
[21] | 左书华, 李蓓, 杨华. 长江口南汇嘴海域表层悬浮泥沙分布和运动遥感分析[J]. 水道港口, 2010, 31(5):384-389. |
ZUO S H, LI B, YANG H. Remote sensing analysis on distribution and movement of surface suspended sediment in the Nanhuizui tidal flat, Yangtze Estuary[J]. Journal of Waterway and Harbor, 2010, 31(5): 384-389. | |
[22] | 冯凌旋, 李占海, 李九发, 等. 基于机制分解法长江口南汇潮滩悬移质泥沙通量研究[J]. 长江流域资源与环境, 2011, 20(8):944-950. |
FENG L X, LI Z H, LI J F, et al. Fluxes of suspended sediment in the Nanhui tidal flat of the Yangtze Estuary with mechanism decomposition method[J]. Resources and Environment in the Yangtze Basin, 2011, 20(8): 944-950. | |
[23] |
YANG S L, LI H, YSEBAERT T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657-671.
DOI URL |
[24] |
GORING D G, NIKORA V I. Despiking acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2002, 128(1): 117-126.
DOI URL |
[25] | 佘小建, 崔峥, 徐啸. 上海临港工业区芦潮港海域水文泥沙分析[J]. 水利水运工程学报, 2009(1):76-80. |
SHE X J, CUI Z, XU X. Analysis of hydrological and sediment field data in Luchaogang Sea area of Shanghai[J]. Hydro-Science and Engineering, 2009(1): 76-80. | |
[26] | GORDON L, LOHRMANN A. Near-shore Doppler Current meter wave spectra[C]//Ocean wave measurement and analysis (2001). San Francisco, USA: American Society of Civil Engineers, 2002. |
[27] | 鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析[J]. 海洋学报:中文版, 2012, 34(5):39-49. |
LU Y Z, WU J X, LIU H. An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer[J]. Acta Oceanologica Sinica, 2012, 34(5): 39-49.
DOI URL |
|
[28] | 芦军, 范代读, 涂俊彪, 等. 潮滩上应用ADV进行波浪观测与特征参数计算[J]. 海洋通报, 2016, 35(5):523-531. |
LU J, FAN D D, TU J B, et al. Application of ADV in the tidal flat to observe wave processes and calculate their characteristic parameters[J]. Marine Science Bulletin, 2016, 35(5):523-531. | |
[29] |
MACVEAN L J, LACY J R. Interactions between waves, sediment, and turbulence on a shallow estuarine mudflat[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 1534-1553.
DOI URL |
[30] |
WIBERG P L, SHERWOOD C R. Calculating wave-generated bottom orbital velocities from surface-wave parameters[J]. Computers & Geosciences, 2008, 34(10): 1243-1262.
DOI URL |
[31] |
PORTILLA J, OCAMPO-TORRES F J, MONBALIU J. Spectral partitioning and identification of wind sea and swell[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(1): 107-122.
DOI URL |
[32] | 李志强, 陈子燊, 李志龙, 等. 粤东后江湾近岸波浪要素变化特征分析[C]// 中国海洋工程学会.第十二届中国海岸工程学术讨论会论文集. 北京: 海洋出版社, 2005:5. |
LI Z Q, CHEN Z S, LI Z L, et al. Analysis of the variation characteristics of nearshore wave elements in Houjiang Bay, eastern Guangdong[C]// China Ocean Engineering Society. Proceedings of the 12th China Coastal Engineering Sympo-sium. Beijing: China Ocean Press, 2005: 5. | |
[33] | 李志强, 陈子燊, 李志龙. 近岸带波浪传播过程中波性质的统计对比分析[J]. 广东海洋大学学报, 2010, 30(4):43-47. |
LI Z Q, CHEN Z S, LI Z L. Statistical analysis and comparison on wave characteristics during wave propagating in nearshore zone[J]. Journal of Zhanjiang Ocean Univer-sity, 2010, 30(4): 43-47. | |
[34] | 陈子燊, 李志强, 戴志军, 等. 近岸带三组成波耦合作用的观测与分析[J]. 热带海洋学报, 2003, 22(6):46-53. |
CHEN Z S, LI Z Q, DAI Z J, et al. Observations and analysis for triad wave coupling in nearshore waters[J]. Journal of Tropical Oceanography, 2003, 22(6): 46-53. | |
[35] | 任剑波, 何青, 沈健, 等. 远区台风 “三巴” 对长江口波浪动力场的作用机制[J]. 海洋科学, 2020, 44(5):12-23. |
REN J B, HE Q, SHEN J, et al. The effect mechanism of a remote typhoon “Sanba” on wave dynamics in the Changjiang Estuary[J]. Marine Sciences, 2020, 44(5): 12-23. |
[1] | 方明豹, 黄佳钰, 杨万康, 孙纯键. 海岛核电厂址的设计基准洪水位研究[J]. 海洋学研究, 2020, 38(4): 80-87. |
[2] | 伍志元, 蒋昌波, 何智勇, 陈杰, 邓斌, 谢振东. 大气-海浪耦合模式及其在理想台风模拟中的应用研究[J]. 海洋学研究, 2019, 37(2): 9-15. |
[3] | 陈橙, 李焱. 基于SWAN模型的南中国海“莫拉菲”台风浪研究[J]. 海洋学研究, 2017, 35(4): 14-19. |
[4] | 郑崇伟, 庄卉, 贾本凯, 郭随平. 基于WW3模式的一次台风浪过程中掠海飞行器的击水概率分析[J]. 海洋学研究, 2013, 31(3): 36-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||