海洋学研究 ›› 2023, Vol. 41 ›› Issue (4): 1-11.DOI: 10.3969/j.issn.1001-909X.2023.04.001
• 研究论文 • 下一篇
赵跃然1(), 范高晶2, 吴嘉琪1,3, 孙维萍1, 潘建明1, 韩正兵1,*()
收稿日期:
2023-03-01
修回日期:
2023-05-05
出版日期:
2023-12-15
发布日期:
2024-01-30
通讯作者:
韩正兵(1986—),男,副研究员,主要从事极地生物地球化学方面的研究,E-mail:作者简介:
赵跃然(1999—),女,山东省威海市人,主要从事极地生物泵方面的研究,E-mail:pippin_z@163.com。
基金资助:
ZHAO Yueran1(), FAN Gaojing2, WU Jiaqi1,3, SUN Weiping1, PAN Jianming1, HAN Zhengbing1,*()
Received:
2023-03-01
Revised:
2023-05-05
Online:
2023-12-15
Published:
2024-01-30
摘要:
南乔治亚岛海域是南大洋初级生产力最高的区域之一,具有巨大的固碳潜力,但由于缺乏连续的上层海洋观测资料,该海域生物泵效率的强弱仍未有定论。本研究利用2017年至2020年期间位于南乔治亚岛附近海域的生物地球化学浮标(BGC-Argo)所获取的水文和生物化学参数,探讨了物理过程对生物地球化学过程的影响,并估算了该海域的南极夏季碳输出通量。结果显示:南乔治亚岛上游(南极半岛东北部)和下游(乔治亚海盆)海域Chl-a均呈现出很强的季节性特征,尤其是乔治亚海盆区浮游植物维持了4个月的旺发时间,表明该区域具有稳定持续的铁源供给;利用颗粒有机碳(POC)季节性输出量的时间变率,估算了上、下游的夏季POC输出通量分别为7.12±3.90 mmol·m-2·d-1和45.29±5.40 mmol·m-2·d-1,推测这种差异主要是由于混合层加深后促进了有机碳的向下输出导致的。研究发现该区域维持着较高的生物泵效率,与此前的乔治亚海盆存在“高生产力低输出效率”的结论不同,这可能是由于航次断面调查的即时性无法反映整个季节性特征所造成的。BGC-Argo能提供高时空分辨率的多参数观测数据,本研究结果表明其可以更准确地量化与评估海洋生物地球化学过程和固碳能力。
中图分类号:
赵跃然, 范高晶, 吴嘉琪, 孙维萍, 潘建明, 韩正兵. 南乔治亚岛海域浮游植物季节性旺发特征与POC输出通量:基于BGC-Argo和卫星遥感观测[J]. 海洋学研究, 2023, 41(4): 1-11.
ZHAO Yueran, FAN Gaojing, WU Jiaqi, SUN Weiping, PAN Jianming, HAN Zhengbing. The seasonal blooming characteristics of phytoplankton and POC export flux in the waters around South Georgia Island: Based on BGC-Argo and satellite remote sensing observations[J]. Journal of Marine Sciences, 2023, 41(4): 1-11.
图1 研究海域及BGC-Argo的移动轨迹 (图中等值线表示水深,单位:m;蓝色点表示浮标剖面站点;黑粗线和红粗线分别为南极绕极流南锋(SACCF)和极锋(PF);色标采用对数处理,颜色反映1997年至2017年南半球12月至次年2月气候态Chl-a分布,数据来自欧洲航天局GlobColour项目的多元数据融合产品,空间分辨率为25 km×25 km,时间分辨率为1个月。)
Fig.1 Study area and the movement trajectory of BGC-Argo floats (Contour lines represent water depth, unit: m. Blue dots represent the profiling float stations. The thick black line and red line indicate the southern Antarctic circumpolar current front (SACCF) and polar front (PF), respectively. Color bar uses log transformation, and the color represents the climatological distribution of Chl-a from December to February in the southern hemisphere from 1997 to 2017. The data are from the multi-sensor merged product of the European Space Agency’s GlobColour project with a spatial resolution of 25 km × 25 km and a temporal resolution of 1 month.)
年份 | 位置 | 混合层深度/m | POC储量/(mmol·m-2) | NCP/(mmol·m-2) | POC输出通量/(mmol·m-2·d-1) |
---|---|---|---|---|---|
2017/2018 | 南极半岛东北部海域 | 38.49±18.93 | 610.32±124.83 | 3 976.14±124.53 | 7.12±3.90 |
2018/2019 | 乔治亚海盆 | 62.40±24.55 | 691.62±158.92 | 4 591.86±316.12 | 45.29±5.40 |
表1 基于BGC-Argo的夏季平均混合层深度、POC储量、NCP和POC输出通量
Tab.1 Summer mean values of MLD, POC storage, NCP, and POC export flux based on BGC-Argo
年份 | 位置 | 混合层深度/m | POC储量/(mmol·m-2) | NCP/(mmol·m-2) | POC输出通量/(mmol·m-2·d-1) |
---|---|---|---|---|---|
2017/2018 | 南极半岛东北部海域 | 38.49±18.93 | 610.32±124.83 | 3 976.14±124.53 | 7.12±3.90 |
2018/2019 | 乔治亚海盆 | 62.40±24.55 | 691.62±158.92 | 4 591.86±316.12 | 45.29±5.40 |
图2 BGC-Argo浮标获取的各生化参数剖面变化 (图中白色虚线表示混合层深度。)
Fig.2 Profiles of biogeochemical parameters of BGC-Argo floats (The white dashed line represents the depth of the mixed layer.)
图4 BGC-Argo观测到5 m和50 m处Chl-a质量浓度差异的浮动柱状图 (柱形顶部和底部分别表示Chl-a5 m和Chl-a50 m,绿色柱形表示Chl-a5 m大于Chl-a50 m,橙色反之,柱长表示二者的差异。)
Fig.4 Floating bar chart of the difference in Chl-a mass concentration between 5 m and 50 m observed by BGC-Argo (The top and bottom of the bars represent Chl-a5 m or Chl-a50 m respectively. Green bars indicate that Chl-a5 m is higher than Chl-a50 m, while orange bars indicate the opposite, and the length of the bars represents the difference.)
图6 南乔治亚岛附近海域POC输出量时间序列变化 (阴影部分表示2017/2018年和2018/2019年夏季;趋势线分别为两个夏季POC输出量相对时间的变化趋势。)
Fig.6 Time series of POC export in the waters near South Georgia Island (The shaded area represents the summer seasons of 2017/2018 and 2018/2019; the trend line shows the temporal variation of POC export)
[1] |
GRUBER N, LANDSCHÜTZER P, LOVENDUSKI N S. The variable Southern Ocean carbon sink[J]. Annual Review of Marine Science, 2019, 11: 159-186.
DOI PMID |
[2] |
MARTIN J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1-13.
DOI URL |
[3] |
YOON J E, YOO K C, MACDONALD A M, et al. Reviews and syntheses: Ocean iron fertilization experiments-past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project[J]. Biogeosciences, 2018, 15(19): 5847-5889.
DOI URL |
[4] |
BOYD P W, JICKELLS T, LAW C S, et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions[J]. Science, 2007, 315(5812): 612-617.
PMID |
[5] |
MARTIN P, LOEFF M R, CASSAR N, et al. Iron fertili-zation enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX[J]. Global Biogeochemical Cycles, 2013, 27(3): 871-881.
DOI URL |
[6] |
PERISSINOTTO R, LAUBSCHER R K, MCQUAID C D. Marine productivity enhancement around Bouvet and the South Sandwich Islands (Southern Ocean)[J]. Marine Ecology Progress Series, 1992, 88(1): 41-53.
DOI URL |
[7] |
PERISSINOTTO R, LUTJEHARMS J, VAN BALLEGOOYEN R. Biological-physical interactions and pelagic productivity at the Prince Edward Islands, Southern Ocean[J]. Journal of Marine Systems, 2000, 24(3): 327-341.
DOI URL |
[8] | CAVAGNA A J, FRIPIAT F, ELSKENS M, et al. Biological productivity regime and associated N cycling in the vicinity of Kerguelen Island area, Southern Ocean[J]. Biogeosciences Discussions, 2014, 11(12): 18073-18104. |
[9] |
ARRIGO K R, VAN DIJKEN G L, ALDERKAMP A C, et al. Early spring phytoplankton dynamics in the western Antarctic peninsula[J]. Journal of Geophysical Research: Oceans, 2017, 122(12): 9350-9369.
DOI URL |
[10] |
KORB R E, WHITEHOUSE M. Contrasting primary production regimes around South Georgia, Southern Ocean: Large blooms versus high nutrient, low chlorophyll waters[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(5): 721-738.
DOI URL |
[11] | MATANO R P, COMBES V, YOUNG E F, et al. Modeling the impact of ocean circulation on chlorophyll blooms around South Georgia, Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016391. |
[12] |
MONGIN M, MOLINA E, TRULL T W. Seasonality and scale of the Kerguelen Plateau phytoplankton bloom: A remote sensing and modeling analysis of the influence of natural iron fertilization in the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(5/6/7): 880-892.
DOI URL |
[13] |
MARALDI C, MONGIN M, COLEMAN R, et al. The influence of lateral mixing on a phytoplankton bloom: Distribution in the Kerguelen Plateau region[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(6): 963-973.
DOI URL |
[14] |
POLLARD R T, VENABLES H J, READ J F, et al. Large-scale circulation around the Crozet Plateau controls an annual phytoplankton bloom in the Crozet Basin[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(18/19/20): 1915-1929.
DOI URL |
[15] |
PLANQUETTE H, STATHAM P J, FONES G R, et al. Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(18/19/20): 1999-2019.
DOI URL |
[16] |
BORRIONE I, SCHLITZER R. Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean[J]. Biogeosciences, 2013, 10(1): 217-231.
DOI URL |
[17] |
GILPIN L C, PRIDDLE J, WHITEHOUSE M J, et al. Primary production and carbon uptake dynamics in the vicinity of South Georgia-balancing carbon fixation and removal[J]. Marine Ecology Progress Series, 2002, 242: 51-62.
DOI URL |
[18] |
SCHLOSSER C, SCHMIDT K, AQUILINA A, et al. Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean[J]. Biogeosciences, 2018, 15(16): 4973-4993.
DOI URL |
[19] | BORRIONE I. Island effects on marine production and circulation around the island of South Georgia, Southern Ocean[D]. Germany: Universität Bremen, 2013. |
[20] | BRANDON M A, MURPHY E J, TRATHAN P N, et al. Physical oceanographic conditions to the northwest of the sub-Antarctic Island of South Georgia[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10): 23983-23996. |
[21] |
WARD P, WHITEHOUSE M, MEREDITH M, et al. The Southern Antarctic Circumpolar Current Front: Physical and biological coupling at South Georgia[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(12): 2183-2202.
DOI URL |
[22] |
MOIGNE F, HENSON S A, CAVAN E, et al. What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?[J]. Geophysical Research Letters, 2016, 43(9): 4457-4466.
DOI URL |
[23] |
WHITEHOUSE M J, KORB R E, ATKINSON A, et al. Formation, transport and decay of an intense phytoplankton bloom within the high-nutrient low-chlorophyll belt of the Southern Ocean[J]. Journal of Marine Systems, 2008, 70(1/2): 150-167.
DOI URL |
[24] | REMBAUVILLE M, MANNO C, TARLING G A, et al. Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia[J]. Deep-Sea Research Part I: Oceano-graphic Research Papers, 2016, 115: 22-35. |
[25] |
AINSWORTH J, POULTON A J, LOHAN M C, et al. Iron cycling during the decline of a South Georgia diatom bloom[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 208: 105269.
DOI URL |
[26] | CHAI F, JOHNSON K S, CLAUSTRE H, et al. Monitoring ocean biogeochemistry with autonomous platforms[J]. Nature Reviews Earth & Environment, 2020, 1(6): 315-326. |
[27] |
ORSI A H, WHITWORTH T, NOWLIN W D. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641-673.
DOI URL |
[28] |
THORPE S E, HEYWOOD K J, BRANDON M A, et al. Variability of the southern Antarctic Circumpolar Current front north of South Georgia[J]. Journal of Marine Systems, 2002, 37(1/2/3): 87-105.
DOI URL |
[29] |
WHITEHOUSE M J, PRIDDLE J, SYMON C. Seasonal and annual change in seawater temperature, salinity, nutrient and chlorophyll a distributions around South Georgia, South Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43(4): 425-443.
DOI URL |
[30] |
JOHNSON K S, PLANT J N, COLETTI L J, et al. Biogeochemical sensor performance in the SOCCOM profiling float array[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6416-6436.
DOI URL |
[31] |
BUESSELER K O. The decoupling of production and particulate export in the surface ocean[J]. Global Biogeochemical Cycles, 1998, 12(2): 297-310.
DOI URL |
[32] |
NELSON D M, ANDERSON R F, BARBER R T, et al. Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996-1998[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1645-1674.
DOI URL |
[33] |
SMITH W O, SHIELDS A R, DREYER J C, et al. Interannual variability in vertical export in the Ross Sea: Magnitude, composition, and environmental correlates[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(2): 147-159.
DOI URL |
[34] |
PINCKNEY J L. A mini-review of the contribution of benthic microalgae to the ecology of the continental shelf in the South Atlantic Bight[J]. Estuaries and Coasts, 2018, 41(7): 2070-2078.
DOI |
[35] |
HILLEBRAND H, SOMMER U. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal[J]. Limnology and Oceanography, 1999, 44(2): 440-446.
DOI URL |
[36] |
SALLÉE J B, SPEER K G, RINTOUL S R. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode[J]. Nature Geoscience, 2010, 3(4): 273-279.
DOI |
[37] | MOORE J K, ABBOTT M R. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2000, 105(C12): 28709-28722. |
[38] |
MOORE J K, ABBOTT M R, RICHMAN J G, et al. SeaWiFS satellite ocean color data from the Southern Ocean[J]. Geophysical Research Letters, 1999, 26(10): 1465-1468.
DOI URL |
[39] |
HOLM-HANSEN O, KAHRU M, HEWES C D, et al. Temporal and spatial distribution of chlorophyll-a in surface waters of the Scotia Sea as determined by both shipboard measurements and satellite data[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(12/13): 1323-1331.
DOI URL |
[40] |
KORB R E, WHITEHOUSE M J, WARD P. SeaWiFS in the Southern Ocean: Spatial and temporal variability in phytoplankton biomass around South Georgia[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(1/2/3): 99-116.
DOI URL |
[41] |
KORB R E, WHITEHOUSE M J, ATKINSON A, et al. Magnitude and maintenance of the phytoplankton bloom at South Georgia: A naturally iron-replete environment[J]. Marine Ecology Progress Series, 2008, 368: 75-91.
DOI URL |
[42] |
BORRIONE I, AUMONT O, NIELSDÓTTIR M C, et al. Sedimentary and atmospheric sources of iron around South Georgia, Southern Ocean: A modelling perspective[J]. Biogeosciences, 2014, 11(7): 1981-2001.
DOI URL |
[43] |
HOLM-HANSEN O, HEWES C D. Deep chlorophyll-a maxima (DCMs) in Antarctic waters[J]. Polar Biology, 2004, 27(11): 699-710.
DOI URL |
[44] | TRULL T W, BRAY S G, MANGANINI S J, et al. Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal zones of the Southern Ocean, south of Australia[J]. Journal of Geophysical Research: Oceans, 2001, 106(C12): 31489-31509. |
[45] |
JOUANDET M P, BLAIN S, METZL N, et al. Interannual variability of net community production and air-sea CO2 flux in a naturally iron fertilized region of the Southern Ocean (Kerguelen Plateau)[J]. Antarctic Science, 2011, 23(6): 589-596.
DOI URL |
[46] |
BOYD P W, CLAUSTRE H, LEVY M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752): 327-335.
DOI |
[47] | XING X, WELLS M, CHEN S L, et al. Enhanced winter carbon export observed by BGC-Argo in the Northwest Pacific Ocean[J]. Geophysical Research Letters, 2020, 47: e2020GL089847. |
[48] |
WARD P, SHREEVE R, WHITEHOUSE M, et al. Phyto-and zooplankton community structure and production around South Georgia (Southern Ocean) during Summer 2001/02[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(3): 421-441.
DOI URL |
[49] |
BELCHER A, TARLING G A, MANNO C, et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring[J]. Polar Biology, 2017, 40(10): 2001-2013.
DOI PMID |
[50] |
MANNO C, STOWASSER G, FIELDING S, et al. Deep carbon export peaks are driven by different biological pathways during the extended Scotia Sea (Southern Ocean) bloom[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2022, 205: 105183.
DOI URL |
[51] | SALTER I, KEMP A E S, MOORE C M, et al. Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): 1-17. |
[52] |
BELCHER A, HENLEY S, HENDRY K, et al. Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: A stable isotope approach[J]. Biogeosciences, 2023, 20(6): 3573-3591.
DOI URL |
[53] | FRANCOIS R, HONJO S, KRISHFIELD R, et al. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean[J]. Global Biogeochemical Cycles, 2002, 16(4): 34-1-34-20. |
[54] |
GIERING S L C, HOSKING B, BRIGGS N, et al. The interpretation of particle size, shape, and carbon flux of marine particle images is strongly affected by the choice of particle detection algorithm[J]. Frontiers in Marine Science, 2020, 7: 564.
DOI URL |
[1] | 孟宇, 陈双玲. 海水硝酸盐跃层深度计算方法研究[J]. 海洋学研究, 2023, 41(3): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||