海洋学研究 ›› 2023, Vol. 41 ›› Issue (4): 46-56.DOI: 10.3969/j.issn.1001-909X.2023.04.005
邬欣然(), 董彦辉, 李正刚, 王浩, 章伟艳, 李怀明, 李小虎, 初凤友()
收稿日期:
2023-04-21
修回日期:
2023-06-01
出版日期:
2023-12-15
发布日期:
2024-01-30
通讯作者:
初凤友(1964—),男,研究员,主要从事深海矿产资源和成矿系统研究,E-mail:作者简介:
邬欣然(1997—),女,北京市人,主要从事深海沉积物地球化学研究,E-mail:15811460789@163.com。
基金资助:
WU Xinran(), DONG Yanhui, LI Zhenggang, WANG Hao, ZHANG Weiyan, LI Huaiming, LI Xiaohu, CHU Fengyou()
Received:
2023-04-21
Revised:
2023-06-01
Online:
2023-12-15
Published:
2024-01-30
摘要:
深海沉积物蕴藏着丰富的稀土资源,富稀土沉积物的空间分布特征、稀土赋存形态与富集机制是近年来研究的热点。东太平洋克拉里昂—克里帕顿断裂带(简称CC区)是全球海底最重要的多金属结核成矿带,但对该区域沉积物中伴生富集的稀土资源分布特征和资源潜力认识尚不清楚。该文对CC区西部125个站位沉积物全岩地球化学成分(728组主量元素和625组微量元素)进行了分析,结果表明研究区沉积物中显著富集MnO和P2O5,总稀土含量(∑REY)与P2O5、CaO含量和Ce负异常存在较好的空间正相关性,生物成因钙磷灰石是稀土元素的主要赋存矿物。研究区沉积物∑REY平均值为470±202 μg/g,部分区域∑REY含量高于富稀土沉积物标准(∑REY>700 μg/g),表明研究区具有一定的稀土资源潜力。研究区富稀土沉积物主要分布在以丘陵地形为主的北部,南部海盆区的沉积物稀土含量相对较低。研究区地貌特征差异影响了区域沉积速率和钙磷灰石水动力分选,导致研究区稀土资源分布的南北分带性。
中图分类号:
邬欣然, 董彦辉, 李正刚, 王浩, 章伟艳, 李怀明, 李小虎, 初凤友. 东太平洋CC区深海稀土资源潜力:沉积物地球化学标志[J]. 海洋学研究, 2023, 41(4): 46-56.
WU Xinran, DONG Yanhui, LI Zhenggang, WANG Hao, ZHANG Weiyan, LI Huaiming, LI Xiaohu, CHU Fengyou. Deep-sea rare earth resource potential in the Eastern Pacific Clarion-Clipperton Fracture Zone: Constraint from sediment geochemistry[J]. Journal of Marine Sciences, 2023, 41(4): 46-56.
图1 研究区区域位置(a)及地形图(b) (图a指示了东太平洋克拉里昂—克里帕顿断裂带(CC区)的区域位置,其中黑色线条为断裂带,白色线条为洋壳年龄等时线[14],红色方框代表研究区在CC区的地理位置。图b中白色虚线为研究区南北部界线。)
Fig.1 Tectonic location (a) and topography (b) of the study area (Fig.a indicates the regional location of the Clarion—Clipperton Fracture Zone (CCZ) in the East Pacific Ocean, where the black line is the fracture zone, the white lines are the oceanic crust age isochron[14], and the red box represents the geographical location of the study area. The white dash line in fig.b indicates the boundary that separates study area into north and south parts. )
类别 | SiO2 | Al2O3 | CaO | TiO2 | FeOt | MnO | MgO | Na2O | K2O | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|
最大值 | 80.01 | 16.53 | 6.47 | 0.88 | 9.28 | 6.16 | 6.29 | 13.23 | 3.91 | 2.62 |
最小值 | 52.21 | 5.30 | 1.06 | 0.20 | 2.54 | 0.10 | 2.08 | 3.56 | 1.07 | 0.26 |
平均值 | 60.36 | 14.78 | 1.92 | 0.75 | 7.62 | 0.91 | 3.92 | 6.16 | 2.99 | 0.60 |
标准差 | 2.55 | 1.22 | 0.78 | 0.09 | 0.59 | 0.54 | 0.39 | 0.94 | 0.30 | 0.51 |
变异系数 | 0.04 | 0.08 | 0.41 | 0.12 | 0.08 | 0.59 | 0.10 | 0.15 | 0.10 | 0.86 |
GLOSS | 58.57 | 11.91 | 5.95 | 0.62 | 5.21 | 0.32 | 2.48 | 2.43 | 2.04 | 0.19 |
PAAS | 65.89 | 15.17 | 4.19 | 0.50 | 4.49 | 0.07 | 2.20 | 3.89 | 2.80 | 0.20 |
表1 Statistical results of major element compositions of sediments in the study area 单位:%
Tab.1
类别 | SiO2 | Al2O3 | CaO | TiO2 | FeOt | MnO | MgO | Na2O | K2O | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|
最大值 | 80.01 | 16.53 | 6.47 | 0.88 | 9.28 | 6.16 | 6.29 | 13.23 | 3.91 | 2.62 |
最小值 | 52.21 | 5.30 | 1.06 | 0.20 | 2.54 | 0.10 | 2.08 | 3.56 | 1.07 | 0.26 |
平均值 | 60.36 | 14.78 | 1.92 | 0.75 | 7.62 | 0.91 | 3.92 | 6.16 | 2.99 | 0.60 |
标准差 | 2.55 | 1.22 | 0.78 | 0.09 | 0.59 | 0.54 | 0.39 | 0.94 | 0.30 | 0.51 |
变异系数 | 0.04 | 0.08 | 0.41 | 0.12 | 0.08 | 0.59 | 0.10 | 0.15 | 0.10 | 0.86 |
GLOSS | 58.57 | 11.91 | 5.95 | 0.62 | 5.21 | 0.32 | 2.48 | 2.43 | 2.04 | 0.19 |
PAAS | 65.89 | 15.17 | 4.19 | 0.50 | 4.49 | 0.07 | 2.20 | 3.89 | 2.80 | 0.20 |
图3 研究区沉积物稀土元素配分模式图 (数据来源:西南太平洋底层海水数据来自文献[20],生物成因钙磷灰石和钙十字沸石数据来自文献[16],CC区结核数据来自文献[21],中国黄土数据来自文献[22]。)
Fig.3 REY distribution pattern of sediments in the study area (Data sources: bottom seawater of Southwest Pacific Ocean data are from reference [20], biogenic calcium apatite and calcium zeolite data are from referende [16], CCZ nodules data are from reference [21], Chinese loess data are from reference [22].)
图4 研究区沉积物主量元素空间分布图 (底图为灰阶地形图。)
Fig.4 Spatial distribution of major elements of sediments in the study area (The base map is a gray-scale topographic map.)
图5 研究区沉积物∑REY含量及相关地球化学指标空间分布特征 (底图为灰阶地形图。)
Fig.5 Spatial distribution of ∑REY and other related geochemical index of sediments in the study area (The base map is a gray-scale topographic map.)
图7 CC区西部∑REY含量分布柱状图及太平洋不同区域沉积物∑REY含量累计频率分布图
Fig.7 Histogram of ∑REY content distribution in the western CCZ and cumulative frequency of ∑REY content in sediments from different regions of the Pacific Ocean
[1] |
KATO Y, FUJINAGA K, NAKAMURA K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535-539.
DOI |
[2] |
YASUKAWA K, KINO S, AZAMI K, et al. Geochemical features of Fe-Mn micronodules in deep-sea sediments of the western North Pacific Ocean: Potential for co-product metal extraction from REY-rich mud[J]. Ore Geology Reviews, 2020, 127: 103805.
DOI URL |
[3] |
YASUKAWA K, LIU H J, FUJINAGA K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93: 25-36.
DOI URL |
[4] | 邓义楠, 任江波, 郭庆军, 等. 太平洋西部富稀土深海沉积物的地球化学特征及其指示意义[J]. 岩石学报, 2018, 34(3):733-747. |
DENG Y N, REN J B, GUO Q J, et al. Geochemistry characteristics of REY-rich sediment from deep sea in Western Pacific, and their indicative significance[J]. Acta Petrologica Sinica, 2018, 34(3): 733-747. | |
[5] | 张霄宇, 黄牧, 石学法, 等. 中印度洋洋盆GC11岩心富稀土深海沉积的元素地球化学特征[J]. 海洋学报, 2019, 41(12):51-61. |
ZHANG X Y, HUANG M, SHI X F, et al. The geochemical characteristics of rare earth elements rich deep sea deposit of Core GC11 in central Indian Ocean Basin[J]. Haiyang Xuebao, 2019, 41(12): 51-61. | |
[6] | 张霄宇, 石学法, 黄牧, 等. 深海富稀土沉积研究的若干问题[J]. 中国稀土学报, 2019, 37(5):517-529. |
ZHANG X Y, SHI X F, HUANG M, et al. Some problems in research of deep sea rare earth rich deposit[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(5): 517-529. | |
[7] |
ZHOU T C, SHI X F, HUANG M, et al. The influence of hydrothermal fluids on the REY-rich deep-sea sediments in the Yupanqui Basin, Eastern South Pacific Ocean: Constraints from bulk sediment geochemistry and mineralogical characteristics[J]. Minerals, 2020, 10(12): 1141.
DOI URL |
[8] | 石学法, 符亚洲, 李兵, 等. 我国深海矿产研究:进展与发现(2011—2020)[J]. 矿物岩石地球化学通报,2021, 40(2):305-318. |
SHI X F, FU Y Z, LI B, et al. Research on deep-sea minerals in China:Progress and discovery (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 305-318. | |
[9] |
ZHANG H A, ZHOU J M, YUAN P, et al. Highly positive Ce anomalies of hydrogenetic ferromanganese micronodules from abyssal basins in the NW and NE Pacific: Implications for REY migration and enrichment in deep-sea sediments[J]. Ore Geology Reviews, 2023, 154: 105324.
DOI URL |
[10] | HEIN J R, KOSCHINSKY A, KUHN T. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169. |
[11] |
任江波, 姚会强, 朱克超, 等. 稀土元素及钇在东太平洋CC区深海泥中的富集特征与机制[J]. 地学前缘, 2015, 22(4):200-211.
DOI |
REN J B, YAO H Q, ZHU K C, et al. Enrichment mechanism of rare earth elements and Yttrium in deep-sea mud of Clarion-Clipperton Region[J]. Earth Science Frontiers, 2015, 22(4): 200-211. | |
[12] |
PAUL S A L, VOLZ J B, BAU M, et al. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific[J]. Geochimica et Cosmochimica Acta, 2019, 251: 56-72.
DOI URL |
[13] | KIM M G, HYEONG K, YOO C M. Distribution of rare earth elements and Yttrium in sediments from the Clarion-Clipperton fracture zone, Northeastern Pacific Ocean[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(7): e2022GC010454. |
[14] |
MÜLLER R D, SETON M, ZAHIROVIC S, et al. Ocean basin evolution and global-scale plate reorganization events sincepangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 107-138.
DOI URL |
[15] |
STRAUME E O, GAINA C, MEDVEDEV S, et al. GlobSed: Updated total sediment thickness in the world’s oceans[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1756-1772.
DOI URL |
[16] |
TAKAYA Y, YASUKAWA K, KAWASAKI T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8: 5763.
DOI PMID |
[17] | 王汾连, 何高文, 孙晓明, 等. 太平洋富稀土深海沉积物中稀土元素赋存载体研究[J]. 岩石学报, 2016, 32(7):2057-2068. |
WANG F L, HE G W, SUN X M, et al. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean[J]. Acta Petrologica Sinica, 2016, 32(7): 2057-2068. | |
[18] |
PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394.
DOI URL |
[19] | TAYLOR S R, MCLENNAN S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publica-tions, 1985: 1-312. |
[20] |
ZHANG J, NOZAKI Y. Rare earth elements and Yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji Basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644.
DOI URL |
[21] | KUHN T, WEGORZEWSKI A, RÜHLEMANN C, et al. Composition, formation, and occurrence of polymetallic nodules[M]// Deep-Sea Mining. Cham: Springer Interna-tional Publishing, 2017: 23-63. |
[22] | 陈立业, 张珂, 傅建利, 等. 邙山黄土古土壤S2沉积以来的微量和稀土元素地球化学特征及其物源指示意义[J]. 中山大学学报:自然科学版, 2018, 57(3):14-23. |
CHEN L Y, ZHANG K, FU J L, et al. The trace and rare earth element characteristics of Mangshan Loess since deposit of paleosol S2 and its implications for provenance[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(3): 14-23. | |
[23] | 朱克超, 任江波, 王海峰, 等. 太平洋中部富REY深海粘土的地球化学特征及REY富集机制[J]. 地球科学, 2015, 40(6):1052-1060. |
ZHU K C, REN J B, WANG H F, et al. Enrichment mechanism of REY and geochemical characteristics of REY-rich pelagic clay from the central Pacific[J]. Earth Science, 2015, 40(6): 1052-1060. | |
[24] | 任江波, 何高文, 朱克超, 等. 富稀土磷酸盐及其在深海成矿作用中的贡献[J]. 地质学报, 2017, 91(6):1312-1325. |
REN J B, HE G W, ZHU K C, et al. REY-rich phosphate and its effects on the deep-sea mud mineralization[J]. Acta Geologica Sinica, 2017, 91(6): 1312-1325. | |
[25] | LYLE M. Neogene carbonate burial in the Pacific Ocean[J]. Paleoceanography, 2003, 18(3): 1059. |
[26] |
KON Y, HOSHINO M, SANEMATSU K, et al. Geochemical characteristics of apatite in heavy REE-rich deep-sea mud from Minami-Torishima area, Southeastern Japan[J]. Resource Geology, 2014, 64(1): 47-57.
DOI URL |
[27] |
LIAO J L, CHEN J Y, SUN X M, et al. Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic sediments[J]. Chemical Geology, 2022, 595: 120792.
DOI URL |
[28] |
LIAO J L, SUN X M, WU Z W, et al. Fe-Mn (oxyhydr)oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific[J]. Ore Geology Reviews, 2019, 112: 103044.
DOI URL |
[29] |
BI D J, SHI X F, HUANG M, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: Constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318.
DOI URL |
[30] |
YU M, SHI X F, HUANG M, et al. The transfer of rare earth elements during early diagenesis in REY-rich sediments: An example from the Central Indian Ocean Basin[J]. Ore Geology Reviews, 2021, 136: 104269.
DOI URL |
[31] |
TOYODA K, NAKAMURA Y, MASUDA A. Rare earth elements of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1093-1103.
DOI URL |
[32] |
REN J B, JIANG X X, HE G W, et al. Enrichment and sources of REY in phosphate fractions: Constraints from the leaching of REY-rich deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 2022, 335: 155-168.
DOI URL |
[33] | GLASBY G P. Manganese: predominant role of nodules and crusts[M]//SCHULTZ H D, ZABEL M. Marine geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 371-427. |
[34] |
JUAN C, VAN ROOIJ D, DE BRUYCKER W. An assessment of bottom current controlled sedimentation in Pacific Ocean abyssal environments[J]. Marine Geology, 2018, 403: 20-33.
DOI URL |
[35] |
TANAKA E, NAKAMURA K, YASUKAWA K, et al. Chemostratigraphy of deep-sea sediments in the western North Pacific Ocean: Implications for genesis of mud highly enriched in rare-earth elements and Yttrium[J]. Ore Geology Reviews, 2020, 119: 103392.
DOI URL |
[1] | 林俊川, 孔德明, 陈法锦, 黄超, . 北部湾沉积物记录的近千年以来气候环境变化[J]. 海洋学研究, 2022, 40(3): 49-61. |
[2] | 王苑如, 崔鸿鹏, 李继东, 孙栋, 王春生, 杨娟. 西太平洋多金属结核区表层沉积物细菌群落结构及其对沉积扰动的响应[J]. 海洋学研究, 2021, 39(2): 21-32. |
[3] | 马莉, 刘茜, 何会军, 彭辉, 张劲, . 大沽河流域地下水中稀土元素的地球化学特征[J]. 海洋学研究, 2021, 39(2): 33-42. |
[4] | 曹德凯, 任向文, 石学法. 太平洋东马里亚纳海盆多金属结核成因及品位控制因素[J]. 海洋学研究, 2017, 35(4): 76-86. |
[5] | 胡昊, 许冬, 龙江平, 周勐佳, 唐博, 金路. 北部湾海底沉积物稀土元素与影响因子关系的BP神经网络定量分析[J]. 海洋学研究, 2016, 34(1): 18-26. |
[6] | 王彦美, 韩冰, 吴能友, 赵明辉. 神狐海域水合物沉积层稀土元素地球化学特征[J]. 海洋学研究, 2012, 30(3): 60-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||