不同植被类型对淤泥质潮滩有机碳来源和储量的影响——以茅埏岛为例

刘雨薇, 于培松, 郑旻辉, 赵政嘉, 张偲, 韩沉花

海洋学研究 ›› 2023, Vol. 41 ›› Issue (4) : 94-101.

PDF(2419 KB)
PDF(2419 KB)
海洋学研究 ›› 2023, Vol. 41 ›› Issue (4) : 94-101. DOI: 10.3969/j.issn.1001-909X.2023.04.009
研究报道

不同植被类型对淤泥质潮滩有机碳来源和储量的影响——以茅埏岛为例

作者信息 +

Effects of different vegetation types on the source and storage of organic carbon in muddy tidal flats: Taking Maoyan Island as an example

Author information +
文章历史 +

摘要

滨海湿地具有较强的碳汇能力,不同植被类型会对沉积物中有机碳的来源和储量产生重要影响。在茅埏岛无植被、老红树林、幼红树林和互花米草等4种淤泥质潮滩各采集1根沉积物柱状样品(柱样长度均为1 m,按10 cm间隔分样),测定沉积物粒度、总有机碳(TOC)、总氮(TN)等参数,分析和讨论沉积物有机碳来源、储量及其影响因素。结果显示:1)无植被潮滩、老红树林潮滩、幼红树林潮滩和互花米草潮滩沉积物中TOC平均含量依次为0.71%±0.03%,0.76%±0.16%,0.69%±0.12%,0.83%±0.09%。在0 ~20 cm层,有植被潮滩TOC含量显著高于无植被潮滩;在20 ~100 cm层,互花米草潮滩沉积物TOC含量高于其它潮滩类型。2)茅埏岛潮滩中互花米草潮滩沉积物有机碳储量最高,达5.79 kg/m2,其次是老红树林潮滩(5.61 kg/m2),幼红树林潮滩(4.95 kg/m2)和无植被潮滩(4.84 kg/m2)有机碳储量较低。互花米草潮滩和红树林的覆盖均在一定程度上增强了潮滩的储碳能力。3)互花米草潮滩沉积物中的有机碳主要以陆源为主,占比57.75%;本地植物贡献在老红树林潮滩沉积物中占比最大,占比32.65%;幼红树林潮滩和无植被潮滩沉积物中有机碳均以海源贡献为主,分别占比61.47%和50.45%。

Abstract

Coastal wetlands are known for their significant capacity as carbon sinks, with different types of vegetation playing a crucial role in both sourcing and storing organic carbon in sediments. In this study, sediment core samples (1-meter length, sampled at 10 cm intervals) were collected from four different tidal flats on Maoyan Island, including bare mudflat, mature mangrove, young mangrove, and Spartina alterniflora wetland. The particle size, total organic carbon (TOC), total nitrogen (TN) and other parameters of each layer of sediment were measured at 10 cm interval. The source, storage and influencing factors of sediment organic carbon were analyzed and discussed. The results showed that: (1) The average TOC content in sediments from bare mudflat, mature mangrove, young mangrove, and Spartina alterniflora wetland were 0.71%±0.03%, 0.76%±0.16%, 0.69%±0.12%, and 0.83%±0.09%, respectively. Vegetated flats had significantly higher TOC content than that in bare mudflat in the 0-20 cm layer, while Spartina alterniflora wetland had higher TOC content than those in other tidal flat types in the 20-100 cm layer. (2) Among the 1 m of sediment from Maoyan Island tidal flats, the carbon storage in the Spartina alterniflora wetland was the highest, reaching 5.79 kg/m2, followed by the mature mangrove forest (5.61 kg/m2), the young mangrove forest (4.95 kg/m2), and the bare mudflat (4.84 kg/m2) with relatively lower organic carbon storage. The coverage of Spartina alterniflora and mangroves enhanced the carbon storage capacity of tidal flat to a certain extent. (3) The organic carbon in the tidal flat sediments of Spartina alterniflora was mainly from terrigenous sources, accounting for 57.75%; the contribution of native plants accounted for the largest proportion in the mature mangrove sediments, accounting for 32.65%; the organic carbon in the sediments of young mangroves and bare mudflat was dominated by marine sources, accounting for 61.47% and 50.45%, respectively.

关键词

淤泥质潮滩 / 植被类型 / 碳储量 / 茅埏岛

Key words

mudflat / vegetation types / carbon storage / Maoyan Island

引用本文

导出引用
刘雨薇, 于培松, 郑旻辉, . 不同植被类型对淤泥质潮滩有机碳来源和储量的影响——以茅埏岛为例[J]. 海洋学研究. 2023, 41(4): 94-101 https://doi.org/10.3969/j.issn.1001-909X.2023.04.009
LIU Yuwei, YU Peisong, ZHENG Minhui, et al. Effects of different vegetation types on the source and storage of organic carbon in muddy tidal flats: Taking Maoyan Island as an example[J]. Journal of Marine Sciences. 2023, 41(4): 94-101 https://doi.org/10.3969/j.issn.1001-909X.2023.04.009
中图分类号: Q948   

参考文献

[1]
MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738): 222-225.
[2]
WANG F M, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review, 2021, 8(9): 145-155.
[3]
CHEN J E, WANG D Q, LI Y J, et al. The carbon stock and sequestration rate in tidal flats from coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11): e2020GB006772.
[4]
NELLEMANN C, CORCORAN E, DUARTE C M, et al. Blue carbon: The role of healthy oceans in binding carbon: A rapid response assessment[M]. Norway: Birkeland Trykkeri AS, 2009.
[5]
王法明, 唐剑武, 叶思源, 等. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 2021, 36(3):241-251.
WANG F M, TANG J W, YE S Y, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 241-251.
[6]
LIN W J, WU J H, LIN H J. Contribution of unvegetated tidal flats to coastal carbon flux[J]. Global Change Biology, 2020, 26(6): 3443-3454.
[7]
DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 2011, 4(5): 293-297.
[8]
KAUFFMAN J B, HEIDER C, COLE T G, et al. Ecosystem carbon stocks of Micronesian mangrove forests[J]. Wetlands, 2011, 31: 343-52.
[9]
JOHNSON B J, MOORE K A, LEHMANN C, et al. Middle to late Holocene fluctuations of C3 and C4 vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine[J]. Organic Geochemistry, 2007, 38(3): 394-403.
[10]
COWIE G L, HEDGES J I, CALVERT S E. Sources and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic marine environment[J]. Geochimica et Cosmochimica Acta, 1992, 56(5): 1963-1978.
[11]
MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289-302.
[12]
WU J P, CALVERT S E, WONG C S. Carbon and nitrogen isotope ratios in sedimenting particulate organic matter at an upwelling site off Vancouver Island[J]. Estuarine, Coastal and Shelf Science, 1999, 48(2): 193-203.
[13]
BENSTEAD J P, MARCH J G, FRY B, et al. Testing isosource: Stable isotope analysis of a tropical fishery with diverse organic matter sources[J]. Ecology, 2006, 87(2): 326-333.
We sampled consumers and organic matter sources (mangrove litter, freshwater swamp-forest litter, seagrasses, seagrass epiphytes, and marine particulate organic matter [MPOM]) from four estuaries on Kosrae, Federated States of Micronesia for stable isotope (sigma13C and sigma34S) analysis. Unique mixing solutions cannot be calculated in a dual-isotope, five-endmember scenario, so we tested IsoSource, a recently developed statistical procedure that calculates ranges in source contributions (i.e., minimum and maximum possible). Relatively high minimum contributions indicate significant sources, while low maxima indicate otherwise. Litter from the two forest types was isotopically distinguishable but had low average minimum contributions (0-8% for mangrove litter and 0% for swamp-forest litter among estuaries). Minimum contribution of MPOM was also low, averaging 0-13% among estuaries. Instead, local marine sources dominated contributions to consumers. Minimum contributions of seagrasses averaged 8-47% among estuaries (range 0-88% among species). Minimum contributions of seagrass epiphytes averaged 5-27% among estuaries (range 0-69% among species). IsoSource enabled inclusion of five organic matter sources in our dual-isotope analysis, ranking trophic importance as follows: seagrasses > seagrass epiphytes > MPOM > mangrove forest > freshwater swamp-forest. IsoSource is thus a useful step toward understanding which of multiple organic matter sources support food webs; more detailed work is necessary to identify unique solutions.
[14]
李海宏, 江旷, 鲍毅新, 等. 茅埏岛不同生境大型底栖动物生物多样性[J]. 生态学杂志, 2015, 34(3):765-772.
摘要
2012年11月—2013年10月,对浙江台州茅埏岛不同生境下的大型底栖动物进行了4次取样调查,比较了红树林、互花米草和光滩生境下大型底栖动物的生物多样性及季节变化。共检出大型底栖动物48种,隶属8门9纲28科,其中软体动物、节肢动物和环节动物占总物种数的83.3%。用定量取样的密度数据计算大型底栖动物的Shannon指数、Pielou指数、Margalef指数、Simpson指数和G-F多样性指数,结果表明:互花米草生境在物种种数和栖息密度上均低于光滩和红树林生境,物种种数在季节上春夏两季高于秋冬两季;从Shannon指数和G-F多样性指数上看,红树林生境下大型底栖动物的多样性高于光滩与互花米草生境;红树林间,红树幼林大型底栖动物物种多样性低于6年生和8年生红树林,而科属多样性高于后两者。生境和季节是影响大型底栖动物分布的重要因素。 
LI H H, JIANG K, BAO Y X, et al. Institute of ecology, biodiversity of macrobenthic communities in different habitats of Maoyan Island, China[J]. Chinese Journal of Ecology, 2015, 34(3): 765-772.
[15]
WANG A Q, CHEN J D, JING C W, et al. Monitoring the invasion of Spartina alterniflora from 1993 to 2014 with Landsat TM and SPOT 6 satellite data in Yueqing Bay, China[J]. PLoS One, 2015, 10(8): e0135538.
[16]
HUANG R Q, ZHANG C F, XU X R, et al. Underes-timated PAH accumulation potential of blue carbon vegetation: Evidence from sedimentary records of saltmarsh and mangrove in Yueqing Bay, China[J]. Science of the Total Environment, 2022, 817: 152887.
[17]
SHEPARD F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24: 151-158.
[18]
WU H B, GUO Z T, PENG C H. Distribution and storage of soil organic carbon in China[J]. Global Biogeochemical Cycles, 2003, 17(2): 67-80.
[19]
ZHAN C L, CAO J J, HAN Y M, et al. Spatial distribu-tions and sequestrations of organic carbon and black carbon in soils from the Chinese Loess Plateau[J]. Science of the Total Environment, 2013, 465: 255-266.
[20]
李家兵, 张秋婷, 张丽烟, 等. 闽江河口春季互花米草潮滩入侵过程对短叶茳芏沼泽土壤碳氮分布特征的影响[J]. 生态学报, 2016, 36(12):3628-3638.
LI J B, ZHANG Q T, ZHANG L Y, et al. Effect of Spartina alterniflora invasion sequence on soil carbon and nitrogen distribution in a Cyperus malaccensis marsh of the Min River Estuary in spring[J]. Acta Ecologica Sinica, 2016, 36(12): 3628-3638.
[21]
薛成凤, 盛辉, 魏东运, 等. 沉积物干容重分析及其沉积学意义:以东海内陆架海区为例[J]. 海洋与湖沼, 2020, 51(5):1093-1107.
XUE C F, SHENG H, WEI D Y, et al. Dry bulk density analysis for inner shelf sediments of the East China Sea and its sedimentary implications[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1093-1107.
[22]
GU J L, WU J P. Blue carbon effects of mangrove restoration in subtropics where Spartina alterniflora invaded[J]. Ecological Engineering, 2023, 186: 106822.
[23]
GAO Y, ZHOU J, WANG L M, et al. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China[J]. Global Ecology and Conservation, 2019, 17: e00575.
[24]
CAI D L. Geochemical studies on organic carbon isotope of the Huanghe River(Yellow River)Estuary[J]. Science in China: Series B, 1994, 37(8): 1001-1015.
[25]
MIGNÉ A, DAVOULT D, SPILMONT N, et al. A closed-chamber CO2-flux method for estimating intertidal primary production and respiration under emersed conditions[J]. Marine Biology, 2002, 140(4): 865-869.
[26]
马小伟, 郑春芳, 刘伟成, 等. 中国红树林最北缘引种区不同季节和树龄秋茄生理特征比较[J]. 科技通报, 2013, 29(3):58-64.
MA X W, ZHENG C F, LIU W C, et al. Comparison of physiological characteristics of different aged transplanted Kandelia obovata trees in summer and winter in the northest transplanted area of China[J]. Bulletin of Science and Technology, 2013, 29(3): 58-64.

基金

浙江省“领雁”研发攻关计划项目(2023C03120)
浙江省“尖兵”研发攻关计划项目(2022C03044)
浙江省重点研发项目(2021C03183)

编辑: 徐晓群
PDF(2419 KB)

Accesses

Citation

Detail

段落导航
相关文章

/