海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 108-118.DOI: 10.3969/j.issn.1001-909X.2024.03.009
收稿日期:
2023-11-23
修回日期:
2024-01-30
出版日期:
2024-09-15
发布日期:
2024-11-25
通讯作者:
*许东峰(1966—),男,研究员,主要从事大洋环流和海气相互作用方面的研究,E-mail: xudongfengsio@sio.org.cn。
作者简介:
陈建珩(1998—),男,江苏省盐城市人,主要从事物理海洋方面的研究,E-mail: ycjhlaji@gmail.com。
基金资助:
CHEN Jianheng(), XU Dongfeng*(), YAO Zhixiong
Received:
2023-11-23
Revised:
2024-01-30
Online:
2024-09-15
Published:
2024-11-25
摘要:
该文利用线性回归函数,根据卫星测高及中国沿海6个验潮站数据估算出1993—2020年中国沿海绝对海平面上升速率为4.17±1.32 mm/a,相对海平面上升速率为4.47±0.90 mm/a。将1958—2020年的大气数据、海洋数据及气候模态指数作为预报因子,建立了长短期记忆神经网络模型(LSTM模型)、循环神经网络模型(RNN模型)、门控循环单元神经网络模型(GRU模型)和支持向量机回归模型(SVR模型)等多种神经网络模型对中国沿海6个验潮站周边的相对海平面变化趋势进行预测。模型评估结果表明,同时引入大气变量、海洋变量及气候模态指数变量的LSTM模型取得的预测值与观测值的平均相关系数和均方根误差分别为0.866和19.279 mm,在4种模型中表现最佳,可以作为一种新型的预测相对海平面变化的方法。
中图分类号:
陈建珩, 许东峰, 姚志雄. 利用机器学习模型预测中国沿海海平面变化[J]. 海洋学研究, 2024, 42(3): 108-118.
CHEN Jianheng, XU Dongfeng, YAO Zhixiong. Prediction of sea level changes along the coast of China using machine learning models[J]. Journal of Marine Sciences, 2024, 42(3): 108-118.
站点 | 站点号 | 起始 年份 | 纬度/(°N) | 经度/(°E) | 1993—2020年 数据完整度/% |
---|---|---|---|---|---|
大连 | 723 | 1954年 | 38.867 | 121.683 | 98.5 |
吕四 | 979 | 1961年 | 32.133 | 121.617 | 87.7 |
坎门 | 934 | 1959年 | 28.083 | 121.283 | 97.6 |
大埔滘 | 1034 | 1963年 | 22.442 | 114.184 | 98.8 |
闸坡 | 933 | 1959年 | 21.583 | 111.817 | 98.8 |
西沙 | 1745 | 1990年 | 16.833 | 112.333 | 98.8 |
表1 研究使用的验潮站位信息
Tab.1 Informations of tide gauge stations used in this research
站点 | 站点号 | 起始 年份 | 纬度/(°N) | 经度/(°E) | 1993—2020年 数据完整度/% |
---|---|---|---|---|---|
大连 | 723 | 1954年 | 38.867 | 121.683 | 98.5 |
吕四 | 979 | 1961年 | 32.133 | 121.617 | 87.7 |
坎门 | 934 | 1959年 | 28.083 | 121.283 | 97.6 |
大埔滘 | 1034 | 1963年 | 22.442 | 114.184 | 98.8 |
闸坡 | 933 | 1959年 | 21.583 | 111.817 | 98.8 |
西沙 | 1745 | 1990年 | 16.833 | 112.333 | 98.8 |
数据集划分比例(训练集∶验证集) | 归一化RMSE | PCC |
---|---|---|
5∶5 | 0.415 | 0.309 |
6∶4 | 0.325 | 0.460 |
7∶3 | 0.214 | 0.739 |
8∶2 | 0.108 | 0.828 |
9∶1 | 0.095 | 0.839 |
表2 不同数据集划分比例的预训练结果准确性评估
Tab.2 Accuracy evaluation of pre-training results with different data set division ratios
数据集划分比例(训练集∶验证集) | 归一化RMSE | PCC |
---|---|---|
5∶5 | 0.415 | 0.309 |
6∶4 | 0.325 | 0.460 |
7∶3 | 0.214 | 0.739 |
8∶2 | 0.108 | 0.828 |
9∶1 | 0.095 | 0.839 |
变量组合 | 变量数量/个 | 归一化RMSE | PCC |
---|---|---|---|
OV | 2 | 0.168 | 0.788 |
AV | 5 | 0.259 | 0.564 |
IV | 2 | 0.109 | 0.821 |
OAV | 7 | 0.264 | 0.569 |
OIV | 4 | 0.086 | 0.843 |
AIV | 7 | 0.178 | 0.766 |
OAIV | 9 | 0.072 | 0.857 |
表3 坎门验潮站不同输入变量组合下LSTM模型预训练结果的准确性评估
Tab.3 Accuracy evaluation of pre-training results of LSTM model with different input variable combinations for Kanmen tidal gauge station
变量组合 | 变量数量/个 | 归一化RMSE | PCC |
---|---|---|---|
OV | 2 | 0.168 | 0.788 |
AV | 5 | 0.259 | 0.564 |
IV | 2 | 0.109 | 0.821 |
OAV | 7 | 0.264 | 0.569 |
OIV | 4 | 0.086 | 0.843 |
AIV | 7 | 0.178 | 0.766 |
OAIV | 9 | 0.072 | 0.857 |
站点 | 站点代码 | 相对海平面变化速率/(mm·a-1) |
---|---|---|
大连 | 723 | 5.01±0.81 |
吕四 | 979 | 6.00±0.93 |
坎门 | 934 | 4.24±0.66 |
大埔滘 | 1034 | 3.30±0.82 |
闸坡 | 933 | 3.17±0.85 |
西沙 | 1745 | 5.10±1.35 |
平均值 | 4.47±0.90 |
表4 相对海平面变化趋势
Tab.4 Change trend of relative sea level
站点 | 站点代码 | 相对海平面变化速率/(mm·a-1) |
---|---|---|
大连 | 723 | 5.01±0.81 |
吕四 | 979 | 6.00±0.93 |
坎门 | 934 | 4.24±0.66 |
大埔滘 | 1034 | 3.30±0.82 |
闸坡 | 933 | 3.17±0.85 |
西沙 | 1745 | 5.10±1.35 |
平均值 | 4.47±0.90 |
站点 | 站点代码 | 绝对海平面变化速率/(mm·a-1) |
---|---|---|
大连 | 723 | 4.26±1.22 |
吕四 | 979 | 3.90±1.26 |
坎门 | 934 | 4.02±1.25 |
大埔滘 | 1034 | 3.97±1.87 |
闸坡 | 933 | 4.12±1.37 |
西沙 | 1745 | 4.76±0.96 |
平均值 | 4.17±1.32 |
表5 绝对海平面变化趋势
Tab.5 Change trend of absolute sea level
站点 | 站点代码 | 绝对海平面变化速率/(mm·a-1) |
---|---|---|
大连 | 723 | 4.26±1.22 |
吕四 | 979 | 3.90±1.26 |
坎门 | 934 | 4.02±1.25 |
大埔滘 | 1034 | 3.97±1.87 |
闸坡 | 933 | 4.12±1.37 |
西沙 | 1745 | 4.76±0.96 |
平均值 | 4.17±1.32 |
站点 | 站点代码 | 垂直地壳运动趋势/(mm·a-1) |
---|---|---|
大连 | 723 | -1.01±0.95 |
吕四 | 979 | -2.25±1.17 |
坎门 | 934 | -0.48±1.33 |
大埔滘 | 1034 | 0.39±0.77 |
闸坡 | 933 | 0.68±0.76 |
西沙 | 1745 | -0.42±1.29 |
平均值 | -0.52±1.05 |
表6 垂直地壳运动趋势
Tab.6 Change trend of vertical land movement
站点 | 站点代码 | 垂直地壳运动趋势/(mm·a-1) |
---|---|---|
大连 | 723 | -1.01±0.95 |
吕四 | 979 | -2.25±1.17 |
坎门 | 934 | -0.48±1.33 |
大埔滘 | 1034 | 0.39±0.77 |
闸坡 | 933 | 0.68±0.76 |
西沙 | 1745 | -0.42±1.29 |
平均值 | -0.52±1.05 |
模型 | 模型结构 | ||
---|---|---|---|
输入层 | 隐藏层 | 输出层 | |
LSTM模型 | (348,9) | 150 | 1 |
RNN模型 | (348,9) | 150 | 1 |
GRU模型 | (348,9) | 150 | 1 |
SVR模型 | Input Shape=(348,9);C=100;Gamma=0.001;Kernal:“Rbf” |
表7 不同模型的结构和参数
Tab.7 Structures and parameters of different models
模型 | 模型结构 | ||
---|---|---|---|
输入层 | 隐藏层 | 输出层 | |
LSTM模型 | (348,9) | 150 | 1 |
RNN模型 | (348,9) | 150 | 1 |
GRU模型 | (348,9) | 150 | 1 |
SVR模型 | Input Shape=(348,9);C=100;Gamma=0.001;Kernal:“Rbf” |
站点 | 指标 | RNN模型 | GRU模型 | SVR模型 | LSTM模型 |
---|---|---|---|---|---|
大连 | PCC | 0.849 | 0.880 | 0.756 | 0.911 |
RMSE | 0.146 | 0.132 | 0.164 | 0.115 | |
吕四 | PCC | 0.807 | 0.809 | 0.619 | 0.828 |
RMSE | 0.061 | 0.059 | 0.098 | 0.047 | |
坎门 | PCC | 0.829 | 0.846 | 0.813 | 0.877 |
RMSE | 0.086 | 0.082 | 0.094 | 0.071 | |
大埔滘 | PCC | 0.488 | 0.665 | 0.259 | 0.728 |
RMSE | 0.181 | 0.156 | 0.246 | 0.146 | |
闸坡 | PCC | 0.651 | 0.864 | 0.788 | 0.941 |
RMSE | 0.095 | 0.079 | 0.097 | 0.071 | |
西沙 | PCC | 0.822 | 0.856 | 0.799 | 0.908 |
RMSE | 0.133 | 0.131 | 0.154 | 0.112 |
表8 不同模型预测结果的归一化精度评估
Tab.8 Normalized accuracy evaluation of prediction results of different models
站点 | 指标 | RNN模型 | GRU模型 | SVR模型 | LSTM模型 |
---|---|---|---|---|---|
大连 | PCC | 0.849 | 0.880 | 0.756 | 0.911 |
RMSE | 0.146 | 0.132 | 0.164 | 0.115 | |
吕四 | PCC | 0.807 | 0.809 | 0.619 | 0.828 |
RMSE | 0.061 | 0.059 | 0.098 | 0.047 | |
坎门 | PCC | 0.829 | 0.846 | 0.813 | 0.877 |
RMSE | 0.086 | 0.082 | 0.094 | 0.071 | |
大埔滘 | PCC | 0.488 | 0.665 | 0.259 | 0.728 |
RMSE | 0.181 | 0.156 | 0.246 | 0.146 | |
闸坡 | PCC | 0.651 | 0.864 | 0.788 | 0.941 |
RMSE | 0.095 | 0.079 | 0.097 | 0.071 | |
西沙 | PCC | 0.822 | 0.856 | 0.799 | 0.908 |
RMSE | 0.133 | 0.131 | 0.154 | 0.112 |
站点 | RMSE/mm | PCC |
---|---|---|
大连 | 11.841 | 0.911 |
吕四 | 18.836 | 0.828 |
坎门 | 12.014 | 0.877 |
大埔滘 | 26.438 | 0.728 |
闸坡 | 12.416 | 0.941 |
西沙 | 34.132 | 0.908 |
平均值 | 19.279 | 0.866 |
表9 LSTM模型预测性能评估
Tab.9 Prediction performance evaluation of LSTM model
站点 | RMSE/mm | PCC |
---|---|---|
大连 | 11.841 | 0.911 |
吕四 | 18.836 | 0.828 |
坎门 | 12.014 | 0.877 |
大埔滘 | 26.438 | 0.728 |
闸坡 | 12.416 | 0.941 |
西沙 | 34.132 | 0.908 |
平均值 | 19.279 | 0.866 |
[1] | MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: The physical science basis[M]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2021: 2391. |
[2] |
VERMEER M, RAHMSTORF S. Global sea level linked to global temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21527-21532.
DOI PMID |
[3] | OPPENHEIMER M, GLAVOVIC B, HINKEL J, et al. Sea level rise and implications for low-lying islands, coasts and communities[M]//IPCC special report on the ocean and cryosphere in a changing climate. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2019: 321-445. |
[4] |
NEREM R S, BECKLEY B D, FASULLO J T, et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2022-2025.
DOI PMID |
[5] | 自然资源部. 2022年中国海平面公报[EB/OL].(2023-04-05)[2023-08-25]. http://gi.mnr.gov.cn/202304/t20230412_2781114.html. |
[6] |
WOODWORTH P L, MELET A, MARCOS M, et al. Forcing factors affecting sea level changes at the coast[J]. Surveys in Geophysics, 2019, 40(6): 1351-1397.
DOI |
[7] | WANG Q S, PAN C H, ZHANG G Z. Impact of and adaptation strategies for sea-level rise on Yangtze River Delta[J]. Advances in Climate Change Research, 2018, 9(2): 154-160. |
[8] | FENG X B, CHENG Y C. Observing sea levels in the China Seas from satellite altimetry[M]//Remote sensing of the Asian seas. Cham: Springer International Publishing, 2018: 321-338. |
[9] | MENG L S, ZHUANG W, ZHANG W W, et al. Decadal sea level variability in the Pacific Ocean: Origins and climate mode contributions[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(4): 689-698. |
[10] | XI H, ZHANG Z Z, LU Y, et al. Long-term and interannual variation of the steric sea level in the South China Sea and the connection with ENSO[J]. Journal of Coastal Research, 2019, 35(3): 489. |
[11] | SITHARA S, PRAMADA S K, THAMPI S G. Sea level prediction using climatic variables: A comparative study of SVM and hybrid wavelet SVM approaches[J]. Acta Geophysica, 2020, 68(6): 1779-1790. |
[12] | ZUBIER K M, EYOUNI L S. Investigating the role of atmospheric variables on sea level variations in the eastern central Red Sea using an artificial neural network approach[J]. Oceanologia, 2020, 62(3): 267-290. |
[13] | BALOGUN A L, ADEBISI N. Sea level prediction using ARIMA, SVR and LSTM neural network: Assessing the impact of ensemble ocean-atmospheric processes on models’ accuracy[J]. Geomatics, Natural Hazards and Risk, 2021, 12(1): 653-674. |
[14] | ADEBISI N, BALOGUN A L. A deep-learning model for national scale modelling and mapping of sea level rise in Malaysia: The past, present, and future[J]. Geocarto International, 2022, 37(23): 6892-6914. |
[15] | MUSLIM T O, AHMED A N, MALEK M A, et al. Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia[J]. Sustainability, 2020, 12(3): 1193. |
[16] | FU Y G, ZHOU X H, SUN W K, et al. Hybrid model combining empirical mode decomposition, singular spectrum analysis, and least squares for satellite-derived sea-level anomaly prediction[J]. International Journal of Remote Sensing, 2019, 40(20): 7817-7829. |
[17] | ISLAM B U, AHMED S F. Short-term electrical load demand forecasting based on LSTM and RNN deep neural networks[J]. Mathematical Problems in Engineering, 2022, 2022: 2316474. |
[18] | MAKRIDAKIS S, SPILIOTIS E, ASSIMAKOPOULOS V. Statistical and machine learning forecasting methods: Concerns and ways forward[J]. PLoS One, 2018, 13(3): e0194889. |
[19] | FARINOTTI D, HUSS M, FÜRST J J, et al. A consensus estimate for the ice thickness distribution of all glaciers on earth[J]. Nature Geoscience, 2019, 12: 168-173. |
[20] | SAENKO O A, YANG D, GREGORY J M, et al. Separating the influence of projected changes in air temperature and wind on patterns of sea level change and ocean heat content[J]. Journal of Geophysical Research: Oceans, 2015, 120(8): 5749-5765. |
[21] | SMITH-KONTER B R, THORNTON G M, SANDWELL D T. Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges[J]. Geophysical Research Letters, 2014, 41(11): 3793-3801. |
[22] | SUZUKI T, ISHII M. Long-term regional sea level changes due to variations in water mass density during the period 1981-2007[J]. Geophysical Research Letters, 2011, 38(21): L21604. |
[23] | OSTANCIAUX É, HUSSON L, CHOBLET G, et al. Present-day trends of vertical ground motion along the coast lines[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 74-92. |
[24] | PFEFFER J, SPADA G, MÉMIN A, et al. Decoding the origins of vertical land motions observed today at coasts[J]. Geophysical Journal International, 2017, 210(1): 148-165. |
[25] | RAUCOULES D, LE COZANNET G, WÖPPELMANN G, et al. High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: Implications for sea-level measurement[J]. Remote Sensing of Environment, 2013, 139: 386-397. |
[26] | HELIANI L S, WIDJAJANTI N, ENDRAYANTO I, et al. Preprocessing of coastal satellite altimetry, tide gauges, and GNSS data: Towards the possibility of detected vertical deformation of south Java Island[J]. Procedia Environ-mental Sciences, 2013, 17: 308-316. |
[27] | ROVERE A, RAYMO M E, VACCHI M, et al. The analysis of last interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world[J]. Earth-Science Reviews, 2016, 159: 404-427. |
[28] |
VIGNUDELLI S, BIROL F, BENVENISTE J, et al. Satellite altimetry measurements of sea level in the coastal zone[J]. Surveys in Geophysics, 2019, 40(6): 1319-1349.
DOI |
[29] | TANG X H, WANG F, CHEN Y L, et al. Warming trend in northern East China Sea in recent four decades[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 185-191. |
[30] | CHEN Z Y, WANG Z H. Yangtze Delta, China: Taihu lake-level variation since the 1950s, response to sea-level rise and human impact[J]. Environmental Geology, 1999, 37(4): 333-339. |
[31] | WU P, VAN DER WAL W. Postglacial sealevels on a spherical, self-gravitating viscoelastic earth: Effects of lateral viscosity variations in the upper mantle on the inference of viscosity contrasts in the lower mantle[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 57-68. |
[32] | YIN J, YU D P, YIN Z E, et al. Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China[J]. Climatic Change, 2013, 119(3): 919-932. |
[33] | ZOU F, TENZER R, FOK H S, et al. The sea-level changes in Hong Kong from tide-gauge records and remote sensing observations over the last seven decades[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6777-6791. |
[34] |
郭金运, 王建波, 胡志博, 等. 由TOPEX/Poseidon和Jason-1/2探测的1993—2012中国海海平面时空变化[J]. 地球物理学报, 2015, 58(9):3103-3120.
DOI |
GUO J Y, WANG J B, HU Z B, et al. Temporal-spatial variations of sea level over China seas derived from altimeter data of TOPEX/Poseidon, Jason-1 and Jason-2 from 1993 to 2012[J]. Chinese Journal of Geophysics, 2015, 58(9): 3103-3120. | |
[35] | 李建成, 王正涛, 胡建国. 联合多种卫星测高数据分析全球和中国海海平面变化[J]. 武汉测绘科技大学学报, 2000, 25(4):343-347. |
LI J C, WANG Z T, HU J G. Mean sea level variation using historic satellite altimeter data[J]. Geomatics and Information Science of Wuhan University, 2000, 25(4): 343-347. | |
[36] | CHENG X H, QI Y Q. Trends of sea level variations in the South China Sea from merged altimetry data[J]. Global and Planetary Change, 2007, 57(3/4): 371-382. |
[37] | 詹金刚, 王勇, 柳林涛. 中国近海海平面季节尺度变化的时频分析[J]. 地球物理学报, 2003, 46(1):36-41. |
ZHAN J G, WANG Y, LIU L T. Time-frequency analysis of the inter-seasonal variations of China-neighboring seas level[J]. Chinese Journal of Geophysics, 2003, 46(1): 36-41. | |
[38] | AL-JABERY K, OBAFEMI-AJAYI T, OLBRICHT G, et al. Computational learning approaches to data analytics in biomedical applications[M]. London: Academic Press, 2020. |
[39] | ISHIDA K, TSUJIMOTO G, ERCAN A L, et al. Hourly-scale coastal sea level modeling in a changing climate using long short-term memory neural network[J]. Science of the Total Environment, 2020, 720: 137613. |
[40] | BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13: 281-305. |
[41] | WÖPPELMANN G, MARCOS M. Vertical land motion as a key to understanding sea level change and variability[J]. Reviews of Geophysics, 2016, 54(1): 64-92. |
[42] | 于振龙, 许东峰, 姚志雄, 等. 基于多变量LSTM神经网络模型的PDO指数预测研究[J]. 海洋学报, 2022, 44(6):58-67. |
YU Z L, XU D F, YAO Z X, et al. Research on PDO index prediction based on multivariate LSTM neural network model[J]. Haiyang Xuebao, 2022, 44(6): 58-67. | |
[43] | HYNDMAN R J, KOEHLER A B. Another look at measures of forecast accuracy[J]. International Journal of Forecasting, 2006, 22(4): 679-688. |
[44] | CHEN N, HAN G Q, YANG J S. Mean relative sea level rise along the coasts of the China Seas from mid-20th to 21st centuries[J]. Continental Shelf Research, 2018, 152: 27-34. |
[45] | PARKER A. Relative sea level rise along the coast of China mid-twentieth to end twenty-first centuries[J]. Arabian Journal of Geosciences, 2018, 11: 262. |
[46] | ZHOU D X, LIU Y, FENG Y K, et al. Absolute sea level changes along the coast of China from tide gauges, GNSS, and satellite altimetry[J]. Journal of Geophysical Research: Oceans, 2022, 127(9): e2022JC018994. |
[47] |
QU Y, JEVREJEVA S, JACKSON L P, et al. Coastal sea level rise around the China Seas[J]. Global and Planetary Change, 2019, 172: 454-463.
DOI |
[48] |
CONNOR J T, MARTIN R D, ATLAS L E. Recurrent neural networks and robust time series prediction[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 240-254.
DOI PMID |
[49] | CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[Z/OL]. arXiv, 2023: 1412.3555. https://arxiv.org/abs/1412.3555. |
[50] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[1] | 文崧, 罗孝文, 曹凯, 尤伟. 不同采样周期下BDS/GNSS精密单点定位验潮精度分析[J]. 海洋学研究, 2024, 42(2): 62-70. |
[2] | 田芳妍, 何贤强, 朱伯仲, 龚芳, 朱乾坤. 考虑潮位校正的乐清湾潮滩面积近30年变化遥感研究[J]. 海洋学研究, 2023, 41(1): 68-81. |
[3] | 张奕璞, 于硕, 黄大吉, 周泽斌, . 海南新村潟湖潮汐、潮流特征及其对营养盐的影响[J]. 海洋学研究, 2022, 40(2): 69-82. |
[4] | 刘洪博, 潘国富, 应元康, 黄潘阳, 胡涛骏. 基于海洋潮汐动力模型的水位改正方法研究[J]. 海洋学研究, 2014, 32(2): 35-39. |
[5] | 万剑华, 王莉娟, 范陈清, 杨俊钢. 联合多卫星测高数据确定中国近海及其邻域垂线偏差[J]. 海洋学研究, 2012, 30(3): 54-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||