海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 64-74.DOI: 10.3969/j.issn.1001-909X.2024.03.005
收稿日期:
2023-12-30
修回日期:
2024-07-12
出版日期:
2024-09-15
发布日期:
2024-11-25
作者简介:
邸雅楠(1980—),女,甘肃省兰州市人,副教授,主要从事生态毒理学研究,E-mail:diyanan@zju.edu.cn。
基金资助:
DI Ya’nan1,2(), ZHAO Ruoxuan2, XU Jianzhou1,2
Received:
2023-12-30
Revised:
2024-07-12
Online:
2024-09-15
Published:
2024-11-25
摘要:
生物组织病理指标可用于评价海洋生物健康,但在应用中存在效率低、成本高、主观性强等缺陷。将人工智能技术引入生物组织病理分析,可以发挥其高通量的图像分析优势,突破其在海洋生物健康评价和监测中的应用限制。该文通过对海洋生物组织健康评价指标、人工智能技术的图像分析应用以及利用人工智能开展组织病理图像处理的文献调研,提出基于深度学习的海洋动物组织病理图像分析思路,并以海洋贻贝作为模式生物进行技术开发。经过对贻贝鳃组织病理影像数据的训练、验证和预测等过程,确定Res-UNet深度学习模型可对贻贝在典型环境污染物胁迫下的病理损伤进行高效、准确定量,构建了一种能够自动化、高通量和弱主观性地分析海洋贻贝组织病理影像的工作流程,为海洋生物健康评价、海洋监测提供新思路与新技术。
中图分类号:
邸雅楠, 赵若轩, 徐建洲. 基于深度学习的生物组织病理图像分析在海洋监测中的发展潜力及案例分析[J]. 海洋学研究, 2024, 42(3): 64-74.
DI Ya’nan, ZHAO Ruoxuan, XU Jianzhou. Deep learning-based histopathological analysis and its potential application in marine monitoring: A review and case study[J]. Journal of Marine Sciences, 2024, 42(3): 64-74.
评价指标 | 模型架构 | 骨架网络 | ||||
---|---|---|---|---|---|---|
UNet | LinkNet | FPN | VGG16-UNet | ResNet34-UNet | EfficientNetB0-UNet | |
准确率 | 0.898 5±0.086 25 | 0.838 4±0.041 68 | 0.744 9±0.116 4 | 0.894 4±0.083 56 | 0.947 8±0.061 92 | 0.914 4±0.093 33 |
IoU | 0.745 5±0.097 53 | 0.718 9±0.077 96 | 0.713 3±0.117 9 | 0.787 5±0.099 64 | 0.852 6±0.113 3 | 0.793 3±0.120 2 |
Dice系数 | 0.850 7±0.065 17 | 0.808 8±0.090 58 | 0.827 4±0.079 94 | 0.877 7±0.064 56 | 0.915 9±0.078 76 | 0.885 8±0.081 20 |
HD95 | 23.24±24.68 | 25.74±23.54 | 49.78±35.62 | 18.66±27.22 | 10.92±27.84 | 21.00±34.67 |
表1 基于不同模型的图分割性能评价
Tab.1 Performance evaluation of image segmentation based on different models
评价指标 | 模型架构 | 骨架网络 | ||||
---|---|---|---|---|---|---|
UNet | LinkNet | FPN | VGG16-UNet | ResNet34-UNet | EfficientNetB0-UNet | |
准确率 | 0.898 5±0.086 25 | 0.838 4±0.041 68 | 0.744 9±0.116 4 | 0.894 4±0.083 56 | 0.947 8±0.061 92 | 0.914 4±0.093 33 |
IoU | 0.745 5±0.097 53 | 0.718 9±0.077 96 | 0.713 3±0.117 9 | 0.787 5±0.099 64 | 0.852 6±0.113 3 | 0.793 3±0.120 2 |
Dice系数 | 0.850 7±0.065 17 | 0.808 8±0.090 58 | 0.827 4±0.079 94 | 0.877 7±0.064 56 | 0.915 9±0.078 76 | 0.885 8±0.081 20 |
HD95 | 23.24±24.68 | 25.74±23.54 | 49.78±35.62 | 18.66±27.22 | 10.92±27.84 | 21.00±34.67 |
[1] | BOESCH D F, PAUL J F. An overview of coastal environ-mental health indicators[J]. Human and Ecological Risk Assessment: An International Journal, 2001, 7(5): 1409-1417. |
[2] | GODSON P S, VINCENT S G T, KRISHNAKUMAR S. Ecology and biodiversity of benthos[M]. [S.l.]: Elsevier, 2022. |
[3] | 郭海峡, 蔡榕硕, 谭红建. 长江口及邻近海域浮游植物生态系统气候变化综合风险评估[J]. 应用海洋学学报, 2023, 42(4):549-558. |
GUO H X, CAI R S, TAN H J. Assessment of climate change on comprehensive risks of phytoplankton ecosystem in Changjiang Estuary and adjacent waters[J]. Journal of Applied Oceanography, 2023, 42(4): 549-558. | |
[4] | YUAN S Y, LI Y, BAO F W, et al. Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects[J]. Science of the Total Environment, 2023, 858: 159741. |
[5] | CHEN S Y, QU M J, DING J W, et al. BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus[J]. Chemosphere, 2018, 205: 286-296. |
[6] | GU Y Y, WEI Q, WANG L Y, et al. A comprehensive study of the effects of phthalates on marine mussels: Bioconcentration, enzymatic activities and metabolomics[J]. Marine Pollution Bulletin, 2021, 168: 112393. |
[7] | VON MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure[J]. Environmental Science & Technology, 2012, 46(20): 11327-11335. |
[8] | REY-CAMPOS M, MOREIRA R, VALENZUELA-MUÑOZ V, et al. High individual variability in the transcriptomic response of Mediterranean mussels to Vibrio reveals the involvement of myticins in tissue injury[J]. Scientific Reports, 2019, 9:3569. |
[9] | ROCHA T L, SABóIA-MORAIS S M T, BEBIANNO M J. Histopathological assessment and inflammatory response in the digestive gland of marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots[J]. Aquatic Toxicology, 2016, 177: 306-315. |
[10] | BRABY C E, SOMERO G N. Following the heart: Tem-perature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus)[J]. Journal of Experimental Biology, 2006, 209: 2554-2566. |
[11] | SARÀ G, DE PIRRO M. Heart beat rate adaptations to varying salinity of two intertidal Mediterranean bivalves: The invasive Brachidontes pharaonis and the native Mytilaster minimus[J]. Italian Journal of Zoology, 2011, 78(2): 193-197. |
[12] | ANANDRAJ A, MARSHALL D J, GREGORY M A, et al. Metal accumulation, filtration and O2 uptake rates in the mussel Perna perna (Mollusca: Bivalvia) exposed to Hg2+, Cu2+ and Zn2+[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002, 132(3): 355-363. |
[13] | SOLÉ M, PORTE C, BARCELO D, et al. Bivalves residue analysis for the assessment of coastal pollution in the Ebro Delta (NW Mediterranean)[J]. Marine Pollution Bulletin, 2000, 40(9): 746-753. |
[14] | WARD J E, ZHAO S, HOLOHAN B A, et al. Selective ingestion and egestion of plastic particles by the blue mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica): Implications for using bivalves as bioindicators of micro-plastic pollution[J]. Environmental Science & Technology, 2019, 53(15): 8776-8784. |
[15] | SALEM AL-HOWITI N, OUANES BEN OTHMEN Z, BEN OTHMANE A, et al. Use of Tridacna maxima, a bivalve in the biomonitoring of the Saudi Arabian Red Sea coast[J]. Marine Pollution Bulletin, 2020, 150: 110766. |
[16] | DITRIA E M, BUELOW C A, GONZALEZ-RIVERO M, et al. Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective[J]. Frontiers in Marine Science, 2022, 9: 918104. |
[17] | SONG T, PANG C, HOU B Y, et al. A review of artificial intelligence in marine science[J]. Frontiers in Earth Science, 2023, 11: 1090185. |
[18] | GONZÁLEZ-RIVERO M, BEIJBOM O, RODRIGUEZ-RAMIREZ A, et al. Monitoring of coral reefs using artificial intelligence: A feasible and cost-effective approach[J]. Remote Sensing, 2020, 12(3): 489. |
[19] |
SHEN D G, WU G R, SUK H I. Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017, 19: 221-248.
DOI PMID |
[20] | FUCHS T J, BUHMANN J M. Computational pathology: Challenges and promises for tissue analysis[J]. Compu-terized Medical Imaging and Graphics, 2011, 35(7/8): 515-530. |
[21] |
PROCTOR I E. What is histopathology and how to get the most out of your histopathologist[J]. British Journal of Hospital Medicine, 2015, 76(5): 66-68.
DOI PMID |
[22] | ADYANTHAYA S, JOSE M. Quality and safety aspects in histopathology laboratory[J]. Journal of Oral and Maxillo-facial Pathology, 2013, 17(3): 402-407. |
[23] | FANTA E, RIOS F S, ROMÃO S, et al. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food[J]. Ecotoxi-cology and Environmental Safety, 2003, 54(2): 119-130. |
[24] | HSIEH S L, HSIEH S, XU R Q, et al. Toxicological effects of polystyrene nanoplastics on marine organisms[J]. Envi-ronmental Technology & Innovation, 2023, 30: 103073. |
[25] | GEYER H, SHEEHAN P, KOTZIAS D, et al. Prediction of ecotoxicological behaviour of chemicals: Relationship between physico-chemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis[J]. Chemo-sphere, 1982, 11(11): 1121-1134. |
[26] |
LI J N, LUSHER A L, ROTCHELL J M, et al. Using mussel as a global bioindicator of coastal microplastic pollution[J]. Environmental Pollution, 2019, 244: 522-533.
DOI PMID |
[27] |
SMITH J R, FONG P, AMBROSE R F. Dramatic declines in mussel bed community diversity: Response to climate change?[J]. Ecology, 2006, 87(5): 1153-1161.
PMID |
[28] | 张翼飞, 曲梦杰, 丁家玮, 等. 多环芳烃对海洋贝类多生物水平毒性效应的研究进展[J]. 生态毒理学报, 2019, 14(1):18-29. |
ZHANG Y F, QU M J, DING J W, et al. Ecotoxicology: A review of multi-toxicity in marine bivalve induced by polycyclic aromatic hydrocarbons[J]. Asian Journal of Ecotoxicology, 2019, 14(1): 18-29. | |
[29] | AARAB N, MINIER C, LEMAIRE S, et al. Biochemical and histological responses in mussel (Mytilus edulis) exposed to North Sea oil and to a mixture of North Sea oil and alkylphenols[J]. Marine Environmental Research, 2004, 58(2/3/4/5): 437-441. |
[30] | 孟祥敬, 李斐, 王晓晴, 等. 石墨烯联合磷酸三苯酯(TPP)胁迫紫贻贝(Mytilus galloprovincialis)的生理生化响应[J]. 科学通报, 2020, 65(16):1599-1609. |
MENG X J, LI F, WANG X Q, et al. Physiological and biochemistry responses of graphene combined with triphenyl phosphate (TPP) to Mytilus galloprovincialis[J]. Chinese Science Bulletin, 2020, 65(16): 1599-1609. | |
[31] |
MATOZZO V, ERCOLINI C, SERRACCA L, et al. Assessing the health status of farmed mussels (Mytilus galloprovincialis) through histological, microbiological and biomarker analyses[J]. Journal of Invertebrate Pathology, 2018, 153: 165-179.
DOI PMID |
[32] | WOLF J C, MAACK G. Evaluating the credibility of histo-pathology data in environmental endocrine toxicity studies[J]. Environmental Toxicology and Chemistry, 2017, 36(3): 601-611. |
[33] | BASTI L, ENDO M, SEGAWA S, et al. Prevalence and intensity of pathologies induced by the toxic dinoflagellate, Heterocapsa circularisquama, in the Mediterranean mussel, Mytilus galloprovincialis[J]. Aquatic Toxicology, 2015, 163: 37-50. |
[34] |
CUEVAS N, ZORITA I, COSTA P M, et al. Development of histopathological indices in the digestive gland and gonad of mussels: Integration with contamination levels and effects of confounding factors[J]. Aquatic Toxicology, 2015, 162: 152-164.
DOI PMID |
[35] | COPPOLA F, BESSA A, HENRIQUES B, et al. Oxidative stress, metabolic and histopathological alterations in mussels exposed to remediated seawater by GO-PEI after contamination with mercury[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2020, 243: 110674. |
[36] | BERNET D, SCHMIDT H, MEIER W, et al. Histopathology in fish: Proposal for a protocol to assess aquatic pollution[J]. Journal of Fish Diseases, 1999, 22(1): 25-34. |
[37] |
CARELLA F, FEIST S W, BIGNELL J P, et al. Comparative pathology in bivalves: Aetiological agents and disease processes[J]. Journal of Invertebrate Pathology, 2015, 131: 107-120.
DOI PMID |
[38] | 李太伟. 海洋贻贝组织病理指标的深入挖掘与应用[D]. 杭州: 浙江大学, 2021. |
LI T W. Deep investigation and application of histopatho-logical indices in marine mussels[D]. Hangzhou: Zhejiang University, 2021. | |
[39] | OECD. Test No. 487: In vitro mammalian cell micronucleus test[M]. 2023. |
[40] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. |
[41] | SARKER I H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions[J]. SN Computer Science, 2021, 2(6): 420. |
[42] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[43] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016. |
[44] | BI J R, ZHU Z L, MENG Q L. Transformer in computer vision[C]// 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). Fuzhou, China, 2021. |
[45] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Long Beach, USA, 2017. |
[46] | HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. |
[47] | CIOCAN C M, CUBERO-LEON E, PUINEAN A M, et al. Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis[J]. Environmental Pollution, 2010, 158(9): 2977-2984. |
[48] | LEISER F, RANK S, SCHMIDT-KRAEPELIN M, et al. Medical informed machine learning: A scoping review and future research directions[J]. Artificial Intelligence in Medicine, 2023, 145: 102676. |
[49] | YEARLEY A G, GOEDMAKERS C M W, PANAHI A, et al. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval[J]. Artificial Intelligence in Medicine, 2023, 143: 102607. |
[50] | IIZUKA O, KANAVATI F, KATO K, et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours[J]. Scientific Reports, 2020, 10(1): 1504. |
[51] |
GERTYCH A, SWIDERSKA-CHADAJ Z, MA Z X, et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides[J]. Scientific Reports, 2019, 9: 1483.
DOI PMID |
[52] |
FENG Y Q, ZHANG L, MO J. Deep manifold preserving autoencoder for classifying breast cancer histopathological images[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(1): 91-101.
DOI PMID |
[53] |
LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88.
DOI PMID |
[54] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Munich, Germany, 2015. |
[55] | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop. Granada, Spain, 2018. |
[56] |
GRAHAM S, CHEN H, GAMPER J, et al. MILD-Net: Minimal information loss dilated network for gland instance segmentation in colon histology images[J]. Medical Image Analysis, 2019, 52: 199-211.
DOI PMID |
[57] |
HERMSEN M, DE BEL T, DEN BOER M, et al. Deep learning-based histopathologic assessment of kidney tissue[J]. Journal of the American Society of Nephrology, 2019, 30(10): 1968-1979.
DOI PMID |
[58] | SONG Z G, ZOU S M, ZHOU W X, et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning[J]. Nature Commu-nications, 2020, 11: 4294. |
[59] | GRAHAM S, VU Q D, JAHANIFAR M, et al. One model is all you need: Multi-task learning enables simultaneous histology image segmentation and classification[J]. Medical Image Analysis, 2023, 83: 102685. |
[60] | RIJTHOVEN M V, SWIDERSKA-CHADAJ Z, SEELIGER K, et al. You only look on lymphocytes once[C]// The Inter-national Conference on Medical Imaging with Deep Learning, Amsterdam, Netherlands, 2018. |
[61] | RONG R C, SHENG H, JIN K W, et al. A deep learning approach for histology-based nucleus segmentation and tumor microenvironment characterization[J]. Modern Pathology, 2023, 36(8): 100196. |
[62] | CRUZ-ROA A, GILMORE H, BASAVANHALLY A, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: A deep learning approach for quantifying tumor extent[J]. Scientific Reports, 2017, 7: 46450. |
[63] |
KARIMI D, NIR G, FAZLI L, et al. Deep learning-based gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(5): 1413-1426.
DOI PMID |
[64] |
SIRINUKUNWATTANA K, PLUIM J P W, CHEN H, et al. Gland segmentation in colon histology images: The glas challenge contest[J]. Medical Image Analysis, 2017, 35: 489-502.
DOI PMID |
[65] |
VAN DER OOST R, BEYER J, VERMEULEN N P E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review[J]. Environmental Toxicology and Pharmacology, 2003, 13(2): 57-149.
DOI PMID |
[66] | YOUNIS E, ABDELWARITH D A, AL-ASGAH N, et al. Histological changes in the liver and intestine of Nile tilapia, Oreochromis niloticus, exposed to sublethal concentrations of cadmium[J]. Pakistan Journal of Zoology, 2013, 45: 833-841. |
[67] | QU M J, XU J Z, YANG Y L, et al. Assessment of sulfamethoxazole toxicity to marine mussels (Mytilus galloprovincialis): Combine p38-MAPK signaling pathway modulation with histopathological alterations[J]. Ecoto-xicology and Environmental Safety, 2023, 249: 114365. |
[68] | QU M J, DING J W, WANG Y, et al. Genetic impacts induced by BaP and Pb in Mytilus coruscus: Can RAPD be a validated tool in genotoxicity evaluation both in vivo and in vitro?[J]. Ecotoxicology and Environmental Safety, 2019, 169: 529-538. |
[69] | BINELLI A, RIVA C, COGNI D, et al. Assessment of the genotoxic potential of benzo(α)pyrene and pp’-dichlorodi-phenyldichloroethylene in Zebra mussel (Dreissena polymor-pha)[J]. Mutation Research, 2008, 649(1/2):135-145. |
[70] | DI Y N, SCHROEDER D C, HIGHFIELD A, et al. Tissue-specific expression of p53 and ras genes in response to the environmental genotoxicant benzo(α)pyrene in marine mussels[J]. Environmental Science & Technology, 2011, 45(20): 8974-8981. |
[1] | 陈建珩, 许东峰, 姚志雄. 利用机器学习模型预测中国沿海海平面变化[J]. 海洋学研究, 2024, 42(3): 108-118. |
[2] | 邵志远, 赵杰臣, 解龙翔, 牟芳如, 肖静, 刘敏君, 陈雪婧. 基于深度学习和Sentinel-1卫星影像的北极海冰分类精度和影响因素[J]. 海洋学研究, 2024, 42(3): 119-130. |
[3] | 王智弘, 屈科, 杨元平, 王旭, 高榕泽. 卷积神经网络方法在涌潮水动力特性演变中的应用研究[J]. 海洋学研究, 2024, 42(3): 131-141. |
[4] | 董昌明, 王子韵, 谢华荣, 徐广珺, 韩国庆, 周书逸, 谢文鸿, 沈向宇, 韩磊. 人工智能海洋学发展前景[J]. 海洋学研究, 2024, 42(3): 2-27. |
[5] | 陆钰婷, 郭文康, 丁骏, 王林峰, 李晓辉, 王久珂. 人工智能海浪预报的发展与挑战[J]. 海洋学研究, 2024, 42(3): 28-37. |
[6] | 徐广珺, 施宇诚, 余洋, 谢华荣, 谢文鸿, 刘婧媛, 林夏艳, 刘宇, 董昌明. 海洋涡旋智能检测研究进展[J]. 海洋学研究, 2024, 42(3): 38-50. |
[7] | 郑梦轲, 方巍, 张霄智. 深度学习在印度洋偶极子预测中的应用研究综述[J]. 海洋学研究, 2024, 42(3): 51-63. |
[8] | 倪晗玥, 董昌明, 刘振波, 杨劲松, 李晓辉, 任林. 基于BP神经网络模型的哨兵SAR反演风速偏差校正[J]. 海洋学研究, 2024, 42(3): 75-87. |
[9] | 金阳, 韩磊, 金梅兵, 董昌明. 基于ConvLSTM的中国东南沿海波浪智能预报和评估[J]. 海洋学研究, 2024, 42(3): 88-98. |
[10] | 张勇勇. 基于GF5-AHSI遥感数据的横沙浅海水深反演[J]. 海洋学研究, 2022, 40(2): 93-101. |
[11] | 方玥炜, 唐佑民, 李俊德, 刘婷. 几种统计模型对热带印度洋海温异常的预报[J]. 海洋学研究, 2018, 36(1): 1-15. |
[12] | 胡昊, 许冬, 龙江平, 周勐佳, 唐博, 金路. 北部湾海底沉积物稀土元素与影响因子关系的BP神经网络定量分析[J]. 海洋学研究, 2016, 34(1): 18-26. |
[13] | 李露锋, 刘湘南, 李致博, 弥永宏. 珠江口海域叶绿素α质量浓度SAR反演模型[J]. 海洋学研究, 2012, 30(2): 66-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||