远区台风“三巴”对河口波浪增水和波生流影响数值模拟研究

任剑波, 何青, 沈健, 郭磊城, 徐凡

海洋学研究 ›› 2019, Vol. 37 ›› Issue (3) : 21-30.

PDF(5144 KB)
PDF(5144 KB)
海洋学研究 ›› 2019, Vol. 37 ›› Issue (3) : 21-30. DOI: 10.3969/j.issn.1001-909X.2019.03.003
研究论文

远区台风“三巴”对河口波浪增水和波生流影响数值模拟研究

  • 任剑波1,2, 何青*1, 沈健3, 郭磊城1, 徐凡1
作者信息 +

Numerical simulation of the effect of a remote typhoon “Sanba” on wave set-up and wave-induced current in the Changjiang Estuary

  • REN Jian-bo1,2, HE Qing*1, SHEN Jian3, GUO Lei-cheng1, XU Fan1
Author information +
文章历史 +

摘要

波浪增水和波生流是河口泥沙输运、地貌演变和污染物扩散的重要动力之一,但目前关于远区台风影响下长江口波浪增水和波生流的研究比较缺乏。本文建立了覆盖东中国海的台风-天文潮-波浪耦合三维数值模型,研究了远区台风“三巴”对长江口波浪增水和波生流的影响。结果表明:波浪从台风中心向近岸传播过程中,能量耗散引起波浪作用力的衰减和辐射应力的增大,产生波浪增水,长江口波浪增水在0.05 ~0.20 m之间,占台风总增水值的15%~22%。从NW向入射的台风浪产生自北向南的波生沿岸流,垂向上呈现三维结构,平均流速在0.05~0.20 m/s之间,占风暴潮流的15%~50%,充分说明了远区台风可以对长江口波浪增水和波生流产生明显影响,研究成果可以为河口极值水位和流速计算、泥沙输运、水下三角洲地貌演变等研究提供参考。

Abstract

Wave set-up and wave-induced current are the significant dynamics for sediment transport, geomorphology and pollutant diffusion in estuaries, however, researches were rare under remote typhoon conditions in the Changjiang Estuary. In this study, we focused on the spatial distribution of wave set-up and wave-induced current under a remote typhoon named “Sanba” by a coupled 3-D model of typhoon-wind, tide and wave. The results showed that the radiation stress and wave set-up increased when wave propagated from the typhoon eye to coast due to wave energy dissipations, the maximum value of wave set-up could reach up to 0.05~0.20 m, which was 15%~22% of the total water level rise induced by typhoon. The along-shore current generated by wave were about 0.05~0.20 m/s, and could reach up to 15%~50% of storm-induced current. It implied that a remote typhoon could have significant influence on wave set-up and wind-induced current. The research could provide the basis for calculation of return period water level and current, sediment transport, geomorphological evolution of subaqueous delta and so on.

关键词

远区台风 / 长江口 / 波浪增水 / 波生流

Key words

remote typhoon / the Changjiang Estuary / wave set-up / wave-induced current

引用本文

导出引用
任剑波, 何青, 沈健, 郭磊城, 徐凡. 远区台风“三巴”对河口波浪增水和波生流影响数值模拟研究[J]. 海洋学研究. 2019, 37(3): 21-30 https://doi.org/10.3969/j.issn.1001-909X.2019.03.003
REN Jian-bo, HE Qing, SHEN Jian, GUO Lei-cheng, XU Fan. Numerical simulation of the effect of a remote typhoon “Sanba” on wave set-up and wave-induced current in the Changjiang Estuary[J]. Journal of Marine Sciences. 2019, 37(3): 21-30 https://doi.org/10.3969/j.issn.1001-909X.2019.03.003
中图分类号: P731.2   

参考文献

[1] DING Ping-xing, GE Jian-zhong. Analysis of disastrous weather in the Hengsha Shoal and adjacent waters of the Yangtze Estuary[J]. Journal of East China Normal University:Natural Science, 2013(4):83-89.
丁平兴,葛建忠.长江口横沙浅滩及邻近海域灾害性天气分析[J].华东师范大学学报:自然科学版,2013(4):83-89.
[2] DUAN Yi-hong, ZHU Jian-rong, QIN Zeng-hao, et al. A high-resolution numerical storm surge model in the Changjiang River Estuary and its application[J]. Acta Oceanologica Sinica, 2005, 27(3):11-19.
端义宏,朱建荣,秦曾灏,等.一个高分辨率的长江口台风风暴潮数值预报模式及其应用[J].海洋学报,2005,27(3):11-19.
[3] CHEN Hua-wei, GE Jian-zhong, DING Ping-xing. Analysis of storm surge′s process under the influence of waves[J]. Journal of East China Normal University:Natural Science, 2010(4):16-25.
陈华伟,葛建忠,丁平兴.波浪对台风风暴潮过程的影响分析[J].华东师范大学学报:自然科学版,2010(4):16-25.
[4] ZHAO Chang-jin, GE Jian-zhong, DING Ping-xing. Impact of sea level rise on storm surges around the Changjiang Estuary[J].Journal of Coastal Research, 2014, 68(SI):27-34.
[5] MA Jin-rong, CHEN Zhi-chang. Simulation of storm current in the Yangtze Estuary[J]. Hydro Science and Engineering, 2002(1):35-39.
马进荣,陈志昌.长江口风暴潮流场计算[J].水利水运工程学报,2002(1):35-39.
[6] JIA Xiao, LU Chuan-teng, HUANG Hua-cong. The extraordinary weather process inducing sudden siltation in deepwater navigation channel of Yangtze Estuary Ⅱ: sensitivity analysis of typhoon parameters and its typical tracks[J]. Journal of Hohai University: Nature Science, 2017,45(5):439-444.
贾晓,路川藤,黄华聪.影响长江口深水航道骤淤的非常态天气过程Ⅱ:台风要素敏感性分析及典型台风路径[J].河海大学学报:自然科学版,2017,45(5):439-444.
[7] HUANG Hua-cong, JIA Xiao, LU Chuan-teng. The extraordinary weather process inducing sudden siltation in deepwater navigation channel of Yangtze Estuary Ⅰ: the typhoon path characteristics and numerical verfication[J]. Journal of Hohai University: Nature Science, 2017,45(5):432-438.
黄华聪,贾晓,路川藤.影响长江口深水航道骤淤的非常态天气过程Ⅰ:台风的路径特征及数值验证[J].河海大学学报:自然科学版,2017,45(5):432-438.
[8] LIU Meng. Wave dynamic environment of channel deposition in mouth bars of Yangtze River estuary Ⅲ:Effect on channel siltation[J]. Port & Water Engineering, 2016(7):54-60.
刘猛.长江口拦门沙河段航道回淤的波浪动力环境Ⅲ:对航道回淤的影响[J].水运工程,2016(7):54-60.
[9] YANG Shi-lun, DING Ping-xing, ZHAO Qing-ying. Morphodynamic response of a large river mouth to typhoons[J]. The Ocean Engineering, 2002,20(3):69-73.
杨世伦,丁平兴,赵庆英.开敞大河口滩槽冲淤对台风的响应及其动力泥沙机制探讨——以长江口南汇边滩-南槽-九段沙系统为例[J].海洋工程,2002,20(3):69-75.
[10] WANG Hao-bin, YANG Shi-lun, YANG Hai-fei. A study of the surfical suspended sediment concentration in the response to typhoons in the Yangtze Estuary[J]. Journal of East China Normal University: Natural Science, 2019(2):196-208.
王浩斌,杨世伦,杨海飞.台风对长江口表层悬沙浓度的影响[J].华东师范大学学报:自然科学版,2019(2):196-208.
[11] XU Fu-min, HUANG Yun-feng, SONG Zhi-yao. Numerical simulation of typhoon-driven-waves from East China Sea to Yangtze Estuary[J]. Chinese Journal of Hydrodynamics (A), 2008, 23(6):604-611.
徐福敏,黄云峰,宋志尧,东中国海至长江口海域台风浪特性的数值模拟研究[J].水动力学研究与进展A辑, 2008, 23(6):604-611.
[12] KONG Ling-shuang, GU Feng-feng, WANG Wei, et al. Statistics and analysis of typhoon-induced sudden siltation for Yangtze estuary deepwater channel[J]. Port & Waterway Engineering, 2015(5):150-152.
孔令双,顾峰峰,王巍,等.长江口深水航道大风骤淤量的统计与分析[J].水运工程,2015(5):150-152.
[13] ZHAO De-zhao, LIU Jie, WU Hua-lin. Preliminary analysis of typhoon-induced sudden sedimentation in navigation channel in Yangtze Estuary over last decade[J]. Journal of Sediment Research, 2012(2):54-60.
赵德招,刘杰,吴华林.近十年来台风诱发长江口航道骤淤的初步分析[J].泥沙研究,2012(2):54-60.
[14] MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean: A global synthesis[M]. New York:Cambridge University Press,2013.
[15] ZHU Lei, HE Qing, SHEN Jian, et al. The influence of human activities on morphodynamics and alteration of sediment source and sink in the Changjiang Estuary[J]. Geomorphology, 2016, 273(15):52-62.
[16] CAI Hua-yang, SAVENIJEH H, GARELE, et al. Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: identifying the critical position and river discharge for maximum tidal damping[J]. Hydrology and Earth System Sciences, 2019, 23(6), 2 779-2 794.
[17] LI Zhan-hai, LI M Z, DAI Zhi-jun, et al. Intratidal and neap-spring variations of suspended sediment concentrations and sediment transport processes in the North Branch of the Changjiang Estuary[J]. Acta Oceanologica Sinica, 2015, 34(1): 137-147.
[18] ZHU Hui-fang, YUN Cai-xing, MAO Zhi-chang, et al. Characteristics and empiric relationships of wind generated wave in the Changjiang Estuary[J]. Journal of East China Normal University :Natural Science Edition,1984(1):74-83.
朱慧芳,恽才兴,茅志昌,等.长江河口的风浪特性和风浪经验关系[J].华东师范大学学报:自然科学版,1984(1):74-83.
[19] FAN Dai-du, GUO Yan-xia, WANG Ping, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: With an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517-538.
[20] WANG Xi-nian, YIN Qing-jiang, ZHANG Bao-ming. Research and applications of a forecasting model of typhoon surges in China seas[J]. Advances in Water Science, 1991,2(1):1-10
王喜年,尹庆江,张保明.中国海台风风暴潮预报模式的研究与应用[J].水科学进展,1991,2(1):1-10.
[21] CARR L E,ELSBERRY R L. Models of tropical cyclone wind distribution and beta-effect propagation for application to the tropical cyclone track forecasting[J]. Monthly Weather Review, 1997,125:3 190-3 209.
[22] Deltares. Delft3D-FLOW User Manual[M]. 2017.
[23] The SWAN team. SWAN user manual cycle III version 41.3[M].2009.
[24] GE Jian-zhong. Numerical forecasting and visualization of storm surge[D]. Shanghai: East China Normal University, 2007.
葛建忠.风暴潮数值预报及可视化[D].上海:华东师范大学,2007.
[25] OKE P R, ALLEN J S, MILLER R N, et al. A modeling study of the three-dimensional continental shelf circulation off Oregon. Part I: model-data comparisons[J]. Journal of Physical Oceanography, 2002, 32(5):1 360-1 382.
[26] MURPHY A H. Skill scores based on the mean square error and their relationships to the correlation coefficient[J]. Monthly Weather Review, 1988, 116(12):2 417-2 424.
[27] WILLMOTT C J. On the Validation of Models[J]. Physical Geography, 1981, 2(2):184-194.
[28] SHEN Jian, WANG Bao-can. Analysis of seasonal change of mean sea-level in the Changjiang estuarine area[J]. Acta Geographica Sinica, 1990,45(4):59-68.
沈健,王宝灿.长江河口区平均海面季节性变化的分析[J].地理学报,1990,45(4):59-68.
[29] LIU Qiu-xing, LI Cheng. Study of flood′s effects on the water level of the Yangtze Estuary area during the typhoon period[J]. Marine Science Bulletin, 2017,36(2):18-25.
刘秋兴,李铖.上游洪水对台风风暴潮过程期间长江口水位的影响研究[J].海洋通报, 2017,36(2):18-25.
[30] KIM S Y, YASUDA T, MASE H. Wave set-up in the storm surge along open coasts during Typhoon Anita[J]. Coastal Engineering, 2010,57(7):631-642.
[31] SVENDSEN I A. Wave heights and set-up in a surf zone[J]. Coastal Engineering, 1984, 8(4):303-329.

基金

国家自然科学基金项目资助(51739005);科技部项目资助(2016YFE0133700);上海市科委重点基金项目资助(18DZ1204802,18DZ1206400,19230711900)

PDF(5144 KB)

Accesses

Citation

Detail

段落导航
相关文章

/