大风事件对长江口及邻近海域海-气CO2通量的影响

苗燕熠, 王斌, 李德望, 金海燕, 江志兵, 马晓, 于培松, 陈建芳, 王俊洋

海洋学研究 ›› 2020, Vol. 38 ›› Issue (1) : 42-49.

PDF(1474 KB)
PDF(1474 KB)
海洋学研究 ›› 2020, Vol. 38 ›› Issue (1) : 42-49. DOI: 10.3969/j.issn.1001-909X.2020.01.005
研究论文

大风事件对长江口及邻近海域海-气CO2通量的影响

  • 苗燕熠1,3, 王斌*1,3, 李德望1,3, 金海燕1,2,3, 江志兵1,3, 马晓2,3, 于培松1,3, 陈建芳*1,2,3, 王俊洋1,3
作者信息 +

The effect of strong wind on air-sea CO2 flux in the Changjiang River Estuary and its adjacent sea areas

  • MIAO Yanyi1,3, WANG Bin*1,3, LI Dewang1,3, JIN Haiyan1,2,3, JIANG Zhibin1,3, MA Xiao2,3, YU Peisong1,3, CHEN Jianfang*1,2,3, WANG Junyang1,3
Author information +
文章历史 +

摘要

依托2017年8月23日至2017年9月6日在长江口及邻近海域连续走航测得的二氧化碳分压(pCO2)值,结合温度、盐度、溶解氧等数据,阐述该海域pCO2的分布特征,并利用一次大风事件前后一个断面的重复观测数据,讨论天气事件对长江口海-气CO2通量的影响。夏季长江口及邻近海域表层海水pCO2范围为145~929 μatm,总体呈近岸高远岸低的分布特征,在受长江冲淡水影响的区域,海表pCO2较低,整体表现为大气CO2的汇。大风事件(最大风速达9.7 m·s-1)加强了水体的垂直混合,导致近岸区域从大气CO2的弱源变为强源(CO2通量从0.2±1.9上升到 55.0±12.4 mmol·m-2·d-1),而远岸区域的碳汇略有加强(CO2通量从-12.7±2.3变为-16.8±2.5 mmol·m-2·d-1)。因此,在估算东海海-气CO2通量时,台风、冷空气等短时间尺度天气事件的影响也不容忽视。

Abstract

Underway sea surface pCO2, sea surface temperature, sea surface salinity data, and discrete DO data in the East China Sea were obtained from August 23, 2017 to September 6, 2017. The distributions of pCO2 in the Changjiang River Estuary and the adjacent sea areas were examined. Meanwhile, the effect of strong wind on air-sea CO2 flux in this area was discussed based on data of a revisited section before and after a strong wind event. The results show that sea surface pCO2 (145~929 μatm) in the study area was higher in the nearshore and lower in the offshore area. Biological production consumed dissolved inorganic carbon, and lowered sea surface pCO2 of the Changjiang plume waters, which acted as carbon sink. The wind event (the maximum wind speed was 9.7 m·s-1) triggered vertical mixing, enhanced carbon source significantly at nearshore area(from 0.2±1.9 to 55.0±12.4 mmol·m-2·d-1). While, the estimated CO2 sink at offshore waters was stronger than that before the wind (from -12.7±2.3 to -16.8±2.5 mmol·m-2·d-1). Therefore, large bias in air-sea CO2 flux estimation will be introduced if the influence of typhoon and cold-air events are not considered.

关键词

长江口 / 海-气CO2通量 / 风混合

Key words

the Changjiang River Estuary / air-sea CO2 flux / wind mixing

引用本文

导出引用
苗燕熠, 王斌, 李德望, 金海燕, 江志兵, 马晓, 于培松, 陈建芳, 王俊洋. 大风事件对长江口及邻近海域海-气CO2通量的影响[J]. 海洋学研究. 2020, 38(1): 42-49 https://doi.org/10.3969/j.issn.1001-909X.2020.01.005
MIAO Yanyi, WANG Bin, LI Dewang, JIN Haiyan, JIANG Zhibin, MA Xiao, YU Peisong, CHEN Jianfang, WANG Junyang. The effect of strong wind on air-sea CO2 flux in the Changjiang River Estuary and its adjacent sea areas[J]. Journal of Marine Sciences. 2020, 38(1): 42-49 https://doi.org/10.3969/j.issn.1001-909X.2020.01.005
中图分类号: P734   

参考文献

[1] BORGES A V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?[J]. Estuaries, 2005, 28(1): 3-27.
[2] BORGES A V, DELILLE B, FRANKIGNOULLE M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts[J]. Geophysical research letters, 2005, 32(14): 1-4. DOI:10.1029/2005gl023053.
[3] CAI Weijun, DAI Minghan, WANG Yongchen. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis[J]. Geophysical Research Letters, 2006, 33(12): 347-466. DOI: 10.1029/2006GL026219.
[4] TAKAHASHI T, SUTHERLAND S C, WANNINKHOF R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8-10): 554-577.
[5] LI Daoji, ZHANG Jing, HUANG Daji, et al. Oxygen depletion off the Changjiang (Yangtze River) estuary[J]. Science in China Series D: Earth Sciences, 2002, 45(12): 1137-1146.
[6] 卢汐,宋金明,袁华茂,等. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展,2015,30(2):214-225.
LU Xi, SONG Jinming, YUAN Huamao, et al. Carbon distribution and exchange of Kuroshio and adjacent China sea shelf: A review[J]. Advances in Earth Science, 2015, 30(2): 214-225.
[7] GUO Xianghui, WONG G T F. Carbonate chemistry in the northern South China Sea shelf-sea in June 2010[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 119-130.DOI: 10.1016/j.dsr2.2015.02.024.
[8] TSUNOGAI S, WATANABE S, SATO T. Is there a “continental shelf pump” for the absorption of atmospheric CO2?[J]. Tellus B: Chemical and Physical Meteorology, 1999, 51(3): 701-712.
[9] WU Liguang, WANG Bin, GENG Shuqin. Growing typhoon influence on East Asia[J]. Geophysical Research Letters, 2005, 32(18): 109-127. DOI: 10.1029/2005GL022937.
[10] CHEN Chentung Arther, LIU Choteng, CHUANG Wensen, et al. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea[J]. Journal of Marine Systems, 2003, 42(1-2): 65-79.
[11] LI Dewang, CHEN Jianfang, NI Xiaobo, et al. Effects of biological production and vertical mixing on sea surface pCO2 variations in the Changjiang River Plume during Early Autumn: A buoy-based time series study[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6156-6173.
[12] WANG Bin, CHEN Jianfang, JIN Haiyan, et al. Diatom bloom-derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence[J]. Limnology and Oceanography, 2017, 62(4): 1552-1569.
[13] CHEN Chentung Arther, WANG Shulun. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20675-20686.
[14] GUO Xianghui, MIYAZAWA Y, YAMAGATA T. The Kuroshio onshore intrusion along the shelf break of the East China Sea: The origin of the Tsushima Warm Current[J]. Journal of Physical Oceanography, 2006, 36(12): 2205-2231.
[15] 毛汉礼,甘子钧,蓝淑芳. 长江冲淡水及其混合问题的初步探讨[J]. 海洋与湖沼,1963,5(3):183-206.
MAO Hanli, GAN Zijun, LAN Shufang. A preliminary study of the Yangtze Diluted Water and its mixing processes[J]. Oceanologia et Limnoligia Sinica, 1963, 5(3): 183-206.
[16] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报,2001,23(3):1-14.
SU Jilan. A review of circulation dynamics of the coastal oceans near China[J]. Acta Oceanologica Sinica, 2001, 23(3): 1-14.
[17] 浦泳修. 夏季长江冲淡水扩展机制的初析[J]. 东海海洋,1983(1):45-53.
PU Yongxiu. Preliminary analysis on the mechanism of expansion of the Changjiang diluted in summer[J]. Journal of Marine Sciences, 1983(1): 45-53.
[18] YU Peisong, ZHANG Haisheng, ZHENG Minhui, et al. The partial pressure of carbon dioxide and air-sea fluxes in the Changjiang River Estuary and adjacent Hangzhou Bay[J]. Acta Oceanologica Sinica, 2013, 32(6): 13-17.
[19] ZHAI Weidong, DAI Minhan, CAI Weijun, et al. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China[J]. Marine Chemistry, 2005, 93(1): 21-32.
[20] FEELY R A, WANNINKHOF R, MILBURN H B, et al. A new automated underway system for making high precision pCO2 measurements onboard research ships[J]. Analytica Chimica Acta, 1998, 377(98): 185-191.
[21] WANNINKHOF R, THONING K. Measurement of fugacity of CO2 in surface water using continuous and discrete sampling methods[J]. Marine Chemistry, 1993, 44(2-4): 189-204.
[22] BRYAN J R, RILEY J P, WILLIAMS P J L. A Winkler procedure for making precise measurements of oxygen concentration for productivity and related studies[J]. Journal of Experimental Marine Biology& Ecology, 1976, 21(3): 191-197.
[23] LISS P S. Flux of gases across the air-sea interface[J]. Nature, 1974, 247: 181-184.DOI: 10.1038/247181a0.
[24] LISS P S, MERLIVAT L. Air-sea gas exchange rates: Introduction and synthesis[M]//The role of air-sea exchange in geochemical cycling. Springer, Dordrecht, 1986: 113-127.
[25] WANNINKHOF R, ASHER W E, HO D T, et al. Advances in quantifying air-sea gas exchange and environmental forcing[J]. Annual Review of Marine Science, 2009, 1: 213-244. DOI: 10.1146/annurev.marine.010908.163742.
[26] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373-7382.
[27] ZHAI Weidong, DAI Minhan. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea[J]. Marine Chemistry, 2009, 117(1-4): 2-10.
[28] GUO Xianghui, ZHAI Weidong, DAI Minhan, et al. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations[J]. Biogeosciences, 2015, 12(18): 5495-5514.
[29] CHEN Chentung Arthur, ZHAI Weidong, DAI Minhan. Riverine input and air-sea CO2 exchanges near the Changjiang (Yangtze River) Estuary: Status quo and implication on possible future changes in metabolic status[J]. Continental Shelf Research, 2008, 28(12): 1476-1482.
[30] KIM D, CHOI S H, SHIM J H, et al. Revisiting the seasonal variations of sea-air CO2 fluxes in the northern East China Sea[J]. Terrestrial, Atmospheric & Oceanic Sciences, 2013, 24(3): 409-419.
[31] NEMOTO K, MIDORIKAWA T, WADA A, et al. Continuous observations of atmospheric and oceanic CO2 using a moored buoy in the East China Sea: Variations during the passage of typhoons[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8-10): 542-553.
[32] LI Dewang, CHEN Jianfang, NI Xiaobo, et al. Hypoxic Bottom Waters as a Carbon Source to Atmosphere During a Typhoon Passage Over the East China Sea[J]. Geophysical Research Letters, 2019, 46(20): 1-9.
[33] CHOU W C, GONG G C, SHEU D D, et al. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): 1-12.DOI: 10.1029/2008JC005128.
[34] WANG Guizhi, DAI Minhan, SHEN S S P, et al. Quantifying uncertainty sources in the gridded data of sea surface CO2 partial pressure[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5181-5189.
[35] QU Baoxiao, SONG Jinming, YUAN Huamao, et al. Summer carbonate chemistry dynamics in the Southern Yellow Sea and the East China Sea:Regional variations and controls[J]. Continental Shelf Research, 2015, 111: 250-261.DOI: 10.1016/j.csr.2015.08.017.

基金

浙江省自然科学基金项目资助(LQ17D060006);国家自然科学基金项目资助(U1709201,41706120,41806095);中央级科研院所基本科研业务费专项资金项目资助(JG1529,JT1502)

PDF(1474 KB)

Accesses

Citation

Detail

段落导航
相关文章

/