东海陆架区中尺度涡运动路径的统计特征分析

张桃, 李君益, 谢玲玲, 郑少军, 郑慧源

海洋学研究 ›› 2020, Vol. 38 ›› Issue (1) : 77-86.

PDF(3626 KB)
PDF(3626 KB)
海洋学研究 ›› 2020, Vol. 38 ›› Issue (1) : 77-86. DOI: 10.3969/j.issn.1001-909X.2020.01.009
研究报道

东海陆架区中尺度涡运动路径的统计特征分析

  • 张桃1,2, 李君益*1,2, 谢玲玲1,2, 郑少军1,2, 郑慧源1
作者信息 +

Statistical characteristics and path analysis of mesoscale eddy in the East China Sea

  • ZHANG Tao1,2, LI Junyi*1,2, XIE Lingling1,2, ZHENG Shaojun1,2, ZHENG Huiyuan1
Author information +
文章历史 +

摘要

基于1993—2017年卫星高度计海面高度异常中尺度涡旋追踪数据集,对东海陆架区及从西北太平洋入侵东海的涡旋进行路径分类、季节变化及特征参量统计分析,并结合再分析流场资料,进行背景流场、涡度场分析。研究结果显示,近25 a,在东海追踪到318个气旋涡和276个反气旋涡。根据涡旋运动路径将其分为:东海陆架浅海生成往深海传播型(148个)、深海生成向东海陆架浅海传播型(35个)、沿等深线运动型(180个)、徘徊型(121个)、外来入侵到达东海陆架型(25个)及外来入侵到达东海深海型(85个)。6类涡旋的数量存在明显的季节分布,各个类型气旋与反气旋涡数量的季节分布也各不相同。其中,沿等深线运动型涡在春、夏季的数量高于秋、冬季。陆架浅海区生成往深海运动型涡的季节分布较为平均,气旋式涡在夏季数量最少,在春季和冬季数量较多。黑潮与涡旋数量的季节分布有关。徘徊型涡的平均生命周期最长,约为44 d;陆架浅海生成往深海运动型及外来入侵到达东海陆架的中尺度涡具有最大的平均振幅,为13.2 cm;外来入侵到达东海陆架型涡具有最大的直径,为122 km;外来入侵到达东海深海型涡在进入东海后的生命周期、振幅、直径在数值上均为最小。

Abstract

An Archiving Validation and Interpretation of Satellite Oceanographic(AVISO) mesoscale eddy tracking dataset from satellite altimeter during the period from 1993 to 2017 was used to classify the mesoscale eddies in the East China Sea(ECS) according to the path. The results show that 318 cyclones and 276 anticyclones were detected in the ECS during the 25-year period. These mesoscale eddies were classified into the following types according to the path: (1) Eddy generated on the continental shelf of the ECS intrudes into deep sea(148 cases); (2) Eddy generated in deep sea intrudes into the continental shelf of the ECS(35 cases); (3) Eddy spreads along the isobath(180 cases); (4) Eddy wanders around(121 cases); (5) Eddy generated in Pacific Ocean intrudes into the shelf area of the ECS(25 cases) and (6) Eddy generated in Pacific Ocean intrudes into the ECS(85 cases). There existed very obvious seasonality for these six types. And the seasonal distribution for cyclones and anticyclones is diverse. The quantity of eddies for the type 3 is higher in spring and summer, lower in autumn and winter. The distribution of eddies for the type 1 is more evenly. The quantity of cyclones for the type 1 is the lowest in summer, and higher in spring and winter. The seasonal distribution for mesoscale eddies is related to the variations of the Kuroshio. The mean lifetime of eddies for type 4 is the longest, about 44 days. The mean amplitudes of eddies for type 1 and 5 are the largest, about 13.2 cm. The maximum mean diameter of the eddies is for type 5, about 122 km. The mean lifetime, amplitude and diameter of eddies for type 6 are the smallest.

关键词

东海陆架 / 中尺度涡 / 运动路径

Key words

East China Sea continental shelf / mesoscale eddy / motion path

引用本文

导出引用
张桃, 李君益, 谢玲玲, 郑少军, 郑慧源. 东海陆架区中尺度涡运动路径的统计特征分析[J]. 海洋学研究. 2020, 38(1): 77-86 https://doi.org/10.3969/j.issn.1001-909X.2020.01.009
ZHANG Tao, LI Junyi, XIE Lingling, ZHENG Shaojun, ZHENG Huiyuan. Statistical characteristics and path analysis of mesoscale eddy in the East China Sea[J]. Journal of Marine Sciences. 2020, 38(1): 77-86 https://doi.org/10.3969/j.issn.1001-909X.2020.01.009
中图分类号: P731   

参考文献

[1] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216.
[2] CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.DOI: 10.1029/2007GL030812.
[3] EARLY J J, SAMELSON R M, CHELTON D B. The evolution and propagation of quasigeostrophic ocean eddies[J]. Journal of Physical Oceanography, 2011, 41(8): 1535-1555.
[4] ROBINSON A R, MCWILLIAMS J C. The baroclinic instability of the open ocean[J]. Journal of Physical Oceanography, 1974, 49(3): 281-294.
[5] XU Chi, SHANG Xiaodong, HUANG Ruixin. Horizontal eddy energy flux in the world oceans diagnosed from altimetry data[J]. Scientific Reports, 2014, 4: 5316-5322.
[6] 尚晓东,徐驰,陈桂英,等. 海洋中尺度涡的机械能及其源汇研究[J]. 热带海洋学报,2013,32(2):24-36.
SHANG Xiaodong, XU Chi, CHEN Guiying, et al. Review on mechanical energy of ocean mesoscale eddies and associated energy sources and sinks[J]. Journal of Tropical Oceanography, 2013, 32(2): 24-36.
[7] LOZIER M S. Deconstructing the conveyor belt[J]. Science, 2010, 328(5985): 1507-1511.
[8] MUNK W, ARMI L, FISCHER K, et al. Spirals on the sea[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 2000, 456(1997): 1217-1280.
[9] ZAMUDIO L, HURLBURT H E, METZGER E J, et al. Tropical wave-induced oceanic eddies at Cabo Corrientes and the María Islands, Mexico[J]. Journal of Geophysical Research, 2007, 112: C05048.
[10] UBELMANN C, FU L L. Cyclonic eddies formed at the Pacific tropical instability wave fronts[J]. Journal of Geophysical Research, 2011, 116(C12): C12021.
[11] QIU Bo. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/POSEIDON observations and theory[J]. Journal of Physical Oceanography, 1999, 29(10): 2471-2486.
[12] DENGGLER M, SCHOTT F A, EDEN C, et al. Break-up of the Atlantic deep western boundary current into eddies at 8°S[J]. Nature, 2004, 432(7020): 1018-1020.
[13] ADAMS D K, MCGILLICUDDY D J, ZAMUDIO L, et al. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents[J]. Science, 2011, 332(6029): 580-583.
[14] LOZIER M S. Evidence for large-scale eddy-driven gyres in the North Atlantic[J]. Science, 1997, 277(5324): 361-364.
[15] 孙湘平. 中国近海区域海洋[M]. 北京:海洋出版社,2006.
SUN Xiangping. China offshore area oceanography[M]. Beijing: China Ocean Press, 2006.
[16] 秦蕴珊,赵一阳,陈丽蓉,等. 东海地质[M]. 北京:科学出版社,1987.
QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. East China Sea geology[M]. Beijing: China Science Publishing, 1987.
[17] 许东禹,刘锡清,张训华. 中国近海地质[M]. 北京:地质出版社,1997.
XU Dongyu, LIU Xiqing, ZHANG Xunhua. China offshore geology[M]. Beijing: Geological Publishing House, 1997.
[18] 鲍献文,林霄沛,吴德星,等. 东海陆架环流季节变化的模拟与分析[J]. 中国海洋大学学报,2005,35(3):349-356.
BAO Xianwen, LIN Xiaopei, WU Dexing, et al. Simulation and analysis of seasonal variations of continental circulation in the East China Sea[J]. Periodical of Ocean University of China, 2005, 35(3): 349-356.
[19] 修树孟,郑全安,孙湘平. 中尺度涡诱导的陆架上升流[J]. 水动力学研究与进展A辑,2002,17(1):64-71.
XIU Shumeng, ZHENG Quan'an, SUN Xiangping. Meso-scale eddies induced upwelling[J]. Hydrodynamic Research and Progress Series A, 2002, 17(1): 64-71.
[20] MA Libin, WANG Qiang. Mean properties of mesoscale eddies in the Kuroshio recirculation region[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(3): 681-702.
[21] 程建婷,杨德周,尹宝树,等. 台湾以东中尺度涡对黑潮入侵东海路径的影响[J]. 海洋科学,2017,41(2):81-88.
CHENG Jianting, YANG Dezhou, YING Baoshu, et al.The detection of meso-scale eddies in the east of Taiwan and its impact on the path of Kuroshio intrusion to the East China Sea[J]. Marine Sciences, 2017, 41(2): 81-88.
[22] 郭炳火,葛人峰. 东海黑潮锋面涡旋在陆架水与黑潮水交换中的作用[J]. 海洋学报,1997,19(6):1-11.
GUO Binghuo, GE Renfeng. The role of the Kuroshio front eddy in the East China Sea in the exchange of shelf water and Kuroshio water[J]. Acta Oceanologica Sinica, 1997, 19(6): 1-11.
[23] 袁耀初,杨成浩,王彰贵. 2000年东海黑潮和琉球群岛以东海流的变异Ⅱ.冲绳岛东南海域海流及其附近中尺度涡的变异[J]. 海洋学报,2006,28(3):17-28.
YUAN Yaochu, YANG Chenghao, WANG Zhanggui. The Kuroshio in the East China Sea and the variation of the East China Sea in the Ryukyu Islands in 2000[J]. Acta Oceanologica Sinica, 2006, 28(3): 17-28.
[24] 郑全安,袁业立. 海洋中尺度涡旋在陆架上衰变的解析模式研究[J]. 中国科学(B辑),1989(2):207-215.
ZHENG Quan'an, YUAN Yeli. Study on the analytical model of decay of mesoscale eddy on the continental shelf[J]. Science in China: Series B, 1989(2): 207-215.
[25] WU Chauron, LU Huangfu, CHAO Shennyu. A numerical study on the formation of upwelling off northeast Taiwan[J]. Journal of Geophysical Research, 2008, 113(C8): C08025.
[26] 殷玉齐.中尺度涡旋对台湾东北黑潮入侵影响及机制研究[D].青岛:中国海洋大学,2014.
YIN Yuqi. A study on the impact of mesoscale eddies on Kuroshio intrusion variations northeast of Taiwan and its underlying mechanism[D]. Qingdao: Ocean University of China, 2014.

基金

国家自然科学基金资助(41706025);广东海洋大学科研启动经费项目资助(R17052)

PDF(3626 KB)

Accesses

Citation

Detail

段落导航
相关文章

/